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In some pump–probe optical correlation experiments, the measured signal versus delay between
pulses generally consists of two components: the convolution of the pulse autocorrelation with the
sample impulse response, and a coherent artifact. The latter can obscure the first component near
zero delay where fast time scale processes will be manifest. We present a mathematical description
of the relative shapes and sizes of the two components, so that a fitting process can separate them.
This can yield both the dephasing and relaxation times of saturable absorbers such as
semiconductors. The method is particularly appropriate when the orientational dephasing and
relaxation times are of the same time scale as the laser pulse width. ©1996 American Institute of
Physics.@S0034-6748~96!00702-3#

I. INTRODUCTION

With the advent of femtosecond pulse lasers, researchers
are now able to investigate the femtosecond scale dynamics
of a variety of materials using short pulse correlation tech-
niques. Suitable samples for transmission experiments are
any materials which exhibit saturable absorption. Techno-
logically significant materials of particular interest are semi-
conductors, such as GaAs, light emitting polymers such as
PPV~poly-phenylene-vinylene!, or biological materials, such
as rhodopsin. The ultrashort time scale behavior of the car-
rier dynamics is incompletely understood, yet relevant to the
design of fast optoelectronic devices such as switches and
detectors. Other saturable absorbers, such as dye molecules,
can also be studied for their ultrafast intramolecular dynam-
ics.

A basic and widespread short pulse correlation technique
is the ‘‘pump–probe.’’ The sample is irradiated by two pulses
separated by a known delayt. The integrated transmission of
one of the pulses is recorded versust, averaged over many
repetitions. Ideally, the record produced is a convolution of
the material impulse response with the pulse autocorrelation
function ~AC!. Since the latter can be independently mea-
sured, a deconvolution process can extract the material im-
pulse response from the experimental record. In order to
measure the transmission of only one of the pulses, the
pulses may be distinguished by wavelength, angle of inci-
dence, or polarization.

However, in many cases it is impractical to use different
wavelengths. And even though the two pulses are distin-
guished by angle or polarization, they may interact through
the material properties to contribute a portion to the trans-
mission correlation record called the coherent artifact~CA!.
The CA complicates the correlation data near zero delay
~having a width not wider than the AC!. The confusing effect
of the CA has led some investigators to completely forgo the
data close to zero delay.1 This is acceptable when the corre-
lation record is much wider than the CA or AC. However, for
fast relaxation processes, the correlation record will have a
shape decaying not significantly wider than the CA or AC. In
this case the CA cannot be ignored.

The purpose of this report is to present a mathematical
framework describing all the correlation components, includ-
ing the CA, so that the incoherent and coherent components
can be separated. Fitting the incoherent components yields
the population relaxation time. Fitting the CA component
will yield the orientational~dephasing! relaxation time. The
physics of the latter is interesting in of itself. Thus, beyond
being a nuisance to measuring the population relaxation, the
CA can yield significant information of its own. The termi-
nology we use assumes a transmission experiment and ge-
neric saturable absorber, however, the model should also ap-
ply qualitatively to reflection correlation experiments.

Although the asymmetric pump–probe configuration is
the most widely used correlation configuration, we prefer a
symmetric correlation technique. That is, there is no attempt
to distinguish the pulses. The pulses are collinear, identical in
wavelength, of equal intensities, and the transmission of the
sum of both pulses is measured versust. Their relative po-
larization may be parallel~i! or orthogonal~'!. This optical
correlation technique2 has been used to measure semiconduc-
tor carrier relaxation times3–9 and the intramolecular dynam-
ics of dye molecules.10,11 The record produced is called a
transmission correlation peak~TCP!.

This symmetrical technique excels at measuring relax-
ation times which are as short or shorter than the pulse AC.
This is because the symmetry causes the slow relaxation
components to form an almost level background on which
the faster components manifest themselves as a peak. The
measured width of the peak does not depend on measuring
the t50 position, which is problematic in the asymmetric
~pump–probe! technique. Accurate width measurement is
necessary to determine relaxation components faster than the
pulse width.

Previous work12–16on coherence effects in ultrafast phe-
nomena associated with photoexcited carriers have progres-
sively become complex. Some theories12–14 have included
many-body Coulomb interaction, the semiconductor Bloch
equations, or non-Markovian~memory effects! behavior16 on
a fundamental level. However, these are complex numerical
calculations requiring large computing power. We use an em-
pirical approach that describes the behavior in terms of a
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dephasing timeTu , and a population impulse responseG(t)
which can be further parametrized in terms of a sum of dis-
crete relaxation timesTi . We use the formalism of Refs. 4
and 17, which uses a density matrix theory adapted to semi-
conductors.

II. OPTICAL SETUP

Figure 1 describes the experimental arrangement for
measuring the four kinds of experimental records versus de-
lay t used in our analysis: the symmetrical transmission cor-
relation peak in the orthogonal and parallel modes@'TCP~t!,
iTCP~t!#, the asymmetrical transmission correlation peak
['s(t)], and the pulse autocorrelation@AC~t!#. The details
of the laser system and sample are not important for the
method we are presenting, except that the repetition period
of the laser train (P) must be longer than the longest relax-
ation time to be studied. This is satisfied for GaAs and dye
molecules, where the slowest relaxation times are of the or-
der of a few nanoseconds and the repetition period of our
laser is;10 ns.

The TCP is measured in thei and' polarization modes
by use of either a polarizing or nonpolarizing beamsplitter.
After the symmetric data have been taken in the perpendicu-
lar polarization mode@'TCP~t! and Fig. 1~b!#, a polarizer is
inserted after the sample to block one pulse from the detec-
tor. This achieves the asymmetric configuration@'s(t) and
Fig. 1~a!#. Then by swapping out the sample for a doubling
crystal, the pulse autocorrelation AC~t! is measured@Fig.
1~c!#.

In all cases the photodetector has a response time much
slower than the repetition period of the laser pulse train so
that the transmitted intensity is time averaged. The delayt
between pulses is scanned by a corner cube retroreflector

mounted on a vibrating loudspeaker. Digitizing electronics
record the photodetector output versus time, averaged over
many loudspeaker oscillations, and synchronized to speaker
position. Subsequent processing converts the horizontal
record axis from time to pulse delay.

Using the four experimental records, a fit is made to the
model presented below, with independent parametersTu and
function G(t). The model requires knowledge of a set of
coefficientsYi j andYi jkl which describe the symmetry prop-
erties of the saturable absorption process in the sample.4,17

These coefficients can depend on the semiconductor band
structure at the wavelength being probed.4 We presume that
theseY values are known.

III. THEORY

We use the formalism of Refs. 4 and 17, where the
density-matrix equations are solved for a three-level system
consisting of two levels and a reservoir, describing saturable
absorption of carriers interacting with the electric field of the
incident beam. The interaction is manifested in the third-
order polarization, which describes the change in transmitted
intensity. Let the incident field be described by

E~ t !5exp~ ivt !(
j
Ej~ t !êj , ~1!

whereEj (t) is the envelope of the component having a po-
larization directionêj , and indexj is one of two polarization
directionsx̂ or ŷ, andv is the carrier frequency underneath
the envelope. The relevant component of the third-order non-
linear polarization is then17

P~3!~ t !} i exp~ ivt !(
i jkl

êiEj~ t !E
0

`

dwAi jkl ~w!Ek* ~ t

2w!El~ t2w! ~2!

with Ai jkl (t) the impulse response of the third-order suscep-
tibility of the system to a particular combination of electric
field polarizations. The indicesi , j , k, l can represent either
the x̂ or ŷ direction. According to Ref. 17,

Ai jkl ~ t !5$Yi jYkl@12exp~2t/Tu!#

1Yi jkl exp~2t/Tu!%G~ t !, ~3!

whereG(t) is the impulse response of the population of the
photoexcited state. Generally,G(t) consists of several com-
ponents having different relaxation rates. For example in
semiconductors, carriers leave their initially photoexcited
states on a femtosecond time scale. A thermal distribution is
formed which cools on a femto-18 or picosecond time scale.
Other processes, such as carriers returning from outer valleys
where they were initially scattered, may contribute picosec-
ond relaxations. These can affect the transmission with nega-
tive polarity, such as observed in GaAs.6 That is, after the
femtosecond scale decrease, the transmission may increase
on a picosecond scale. The longest decay is on a nanosecond
scale, when the carriers make band to band recombination.
For a dye molecule, there can also be simultaneous relax-
ation components on femtosecond, picosecond, and nanosec-
ond time scales.

FIG. 1. Experimental setup for obtaining sample correlation peaks:~a!
asymmetric:'s(t); ~b! symmetric:'tcp(t) and itcp(t); or ~c! pulse auto-
correlation: AC~t!. The laser produces a train of subpicosecond pulses with
period;10 ns. The interferometer creates two echos separated by a delayt,
collinear and of equal intensity. Relative polarizations can bei or' by use
of normal~BS! or polarizing beamsplitter~PBS!. The delay is scanned by a
corner cube~CC! on a vibrating loudspeaker. The photodetector detects time
averaged transmitted intensity. Its output vst is recorded by digital oscillo-
scope synchronized to speaker. The asymmetric correlations(t) is measur-
able only for orthogonal polarizations, when the polarizer behind the sample
blocks one transmitted pulse. The blue filter represents any filter which
passes doubled laser light while rejecting laser fundamental.
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Later, we will modelG(t) as a sum of exponential de-
cays to achieve analytical expressions for the Gaussian pulse
example. However, this is not required if the correlations are
computed numerically. In the figures, for clarity we will
show only the fast and slow relaxation components, not any
intermediate components. Our typical pulse widths are;100
fs. Consider the fast relaxation times to be several times
shorter than this, the medium times to be 1–5 times the pulse
width, and the slow times to be very much longer than the
pulse width, but less than the pulse train periodP ~;10 ns!.

Tu is the dephasing or orientational relaxation time and
describes the decay of an anisotropic momentum distribution
of carriers to an isotropic distribution. For example, transi-
tions from the GaAs heavy-hole band initially result in a
photoexcited population of distribution sin2~u!, whereu is
the angle between the carrier wave vector and the polariza-
tion of the light.

Yi j andYi jkl are coefficients derived from the projection
integrals of the transition-matrix elements which describe the
symmetry of the saturable-absorption process.17 The nonzero
values for an isotropic or cubically symmetric semiconductor
such as GaAs obey the relations

Yxx5Yyy ; Yxxyy5Yyyxx; Yxyyx5Yyxxy;

Yxxxx5Yyyyy. ~4!

These may not hold for an anisotropic sample. For a simple
molecular model of a dye we also haveYxxyy5Yxyyx.

The calculation of these relations for GaAs and AlGaAs
is discussed in detail in Ref. 4 and for dye molecules in Ref.
17. The reader will need to calculate these values for the
particular semiconductor and transition energy being probed.
For purposes of example, we list GaAs values calculated for
2.02 eV~Table I!. These are net values, summed over con-
tributions from the heavy-hole, light-hole, and split-off bands
weighted by the density of states squared.

TheY values for dye~Table I! using a simple molecular
model are derived17 from general symmetry principles and
do not depend on molecule species or transition energy.

The interaction of the applied field with the third-order
polarization leads to an induced change in transmitted
intensity19

DI}ReFE* ~ t !•
dP~3!~ t !

dt G}Im@E* ~ t !•P~3!~ t !#. ~5!

While the measured signal TCP~t! is the total intensity, the
calculated signal is only the portionDTCP~t! due to satu-
rable absorption, above the normal~nonsaturable! transmis-
sion component. If the pulse train period is sufficiently long
then we can express the time averageDTCP(t)}*2`

` dtDI ,
so we have

DTCP~t!}Re(
i jkl

E
0

`

dwAi jkl ~w!E
2`

`

dtEi* ~ t !Ej~ t !

3Ek* ~ t2w!El~ t2w!. ~6!

The appliedE(t) consists of a pair of collinear pulses
having the same envelopeEa(t), separated by a delayt. In
the' polarization caseEx andEy in Eq. ~1! will be

Ex~ t !5Ea~ t !,
~7!

Ey~ t !5Ea~ t1t!exp~ ivt!

and in the parallel case

Ex~ t !5Ea~ t !1Ea~ t1t!exp~ ivt!,
~8!

Ey~ t !50.

To findDTCP~t!, we substitute Eq.~7! or ~8! into Eq.~6!
and sum the eight nonzero permutations ofAi jkl . These can
be reorganized into a sum of asymmetrical terms and their
reflections,

DTCP~t!5DS~t!1DS~2t!, ~9!

DS~t!5sin~t!1sca~t!1osc1DI. ~10!

DS(t) is the asymmetrical correlation peak corresponding to
the transmission of only one of the two pulses.DS(t) con-
sists of four parts, which for the' case are

'DI5E
2`

`

dtE
0

`

dwAxxxx~w!uEa~ t !u2uEa~ t2w!u2, ~11!

osc5Re exp~ i2vt!E
2`

`

dtE
0

`

dwAyxyx~w!Ea* ~ t1t!

3Ea~ t !Ea* ~ t2w1t!Ea~ t2w!, ~12!

'sin~t!5E
0

`

dwAxxyy~w!AC~t2w!, ~13!

'sca~t!5E
0

`

dwAxyyx~w!j~w,t!, ~14!

where AC~t! is the pulse autocorrelation andj(w,t) is a
coherence correlation

AC~t!5E
2`

`

dtuEa~ t !u2uEa~ t2t!u2, ~15!

j~w,t!5Re E
2`

`

dtEa* ~ t !Ea~ t1t!Ea* ~ t1t2w!

3Ea~ t2w!. ~16!

The analogous expressions for thei case are obtained from
Eqs. ~11! to ~14! by using Axxxx throughout, in place of
Axxyy, Axyxy, etc. Thus,

iDI5'DI, ~17!

isin~t!5E
0

`

dwAxxxx~w!AC~t2w!, ~18!

TABLE I. EffectiveY values for the 2.02 eV transition in GaAs~Ref. 4! and
for any wavelength in a dye molecule using a simple model~Ref. 17!.

(Yxx)
2 Yxxxx Yxxyy Yxyyx

GaAs at 2.02 eV 0.84 0.092 0.073 0.060
Dye 1/9 1/5 1/15 1/15
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isca~t!5E
0

`

dwAxxxx~w!j~w,t!. ~19!

DI is the delay independent component, which is not of
interest, since it cannot be experimentally separated from the
normal transmitted intensity. The oscillatory term~osc! is
ignored for our purposes, since we scan our delay fast
enough that this averages to zero by the photodetecting elec-
tronics. ~However, it contains some information about the
pulse shape.! The components of interest to us aresin~t! and
sca~t!, the incoherent and coherent contributions, respec-
tively.

A. Measured form of data

Our method requires measuring the four quantities
'TCP(t), iTCP(t), 'S(t), and the pulse autocorrelation
AC~t!, using different versions of the optical setup@Figs.
1~a!–1~c!#. We are interested in the delay dependent por-
tions, defined as tcp~t! ands(t), respectively.~The oscilla-
tory terms are ignored.! These are related to the above cal-
culated terms by

s~t!5sin~t!1sca~t!. ~20!

For every asymmetrical component there is a symmetrical
counterpart:

tcp~t!5s~t!1s~2t!, ~21!

tcp~t!5tcpin~t!1tcpca~t!. ~22!

The components tcp~t! and s(t) rest above a baseline
intensity TCP~`! or S(`) which consists of the normally
transmitted intensity and DI components,

S~t!5normal1DS~t!, ~23!

DS~t!5s~t!1DI ~24!

and analogously for TCP~t!, DTCP~t!, and tcp~t!. These
definitions are illustrated in Figs. 2 and 3. The baseline
tcp~`!50 is ideally measured at TCP~`!. However, the
maximum delay we can attain is the pulse train periodP. We
assume thatP is much longer than the slowest relaxation
component so that

tcp~P!'tcp~`!50, s~P!'s~`!50. ~25!

This assumption is met for GaAs and most dye molecules,
sinceP;10 ns, and the slowest relaxation components are
band to band transitions, which take several ns in GaAs and
dye molecules. In the figures and in this text, we will often
use the symbol̀ to meanP.

Because of the pulse train repetition, negative delays be-
yond the pulse width for's(t) are equivalent to positive
delays of the order ofP ~Fig. 3!. Thus the baseline is deter-
mined from the height~'L! of the shoulder in the shape of
's(t). This immediately gives us the'tcp(`) baseline since
it shares the same shoulder height. Theitcp shoulder height
~iL! is related to'L considering the effect ofTu and Y
values. For semiconductors,iL > 'L. For dye molecules
iL > 'L (Yxxxx/Yxxyy). This can be seen more easily in the
Gaussian pulse example discussed later.

The experimental data must be normalized so that
TCP~`!51 andS(`)50.5. Furthermore, the calculated ex-
pressions for the tcp~t! ands(t) components assumed equal
pulse intensities between the two arms. Unequal intensities
will not change the horizontal shape of the correlations, only
their heights. Their heights are proportional toI 1I 2 , whereI 1
andI 2 are the intensities from the two arms. If the intensities
are different when changing betweeni and' configurations,
then one should normalize the heights of tcp~t! and s(t),
@not TCP~t! andS(t)#, by dividing by I 1I 2 .

B. General properties

Let us discuss some general properties before modeling
the pulse envelope by a specific shape. In the analysis we
will compare components heights measured att50. We note
from inspection of Eqs.~18! and ~19! that

FIG. 2. Definitions of TCP,DTCP, and tcp. The definitionsS(t), DS(t),
ands(t) are corresponding, in asymmetric form. The absolute transmitted
intensity vs delay is TCP~t!. The portion due to saturable absorption is
DTCP~t!, and the delay dependent portion is tcp~t!. The baseline of tcp~t! is
at tcp~`! or TCP~`!. The vertical extent of the normal transmission compo-
nent is greatly reduced for clarity, since tcp~t! is not usually more than a few
percent high. The longest delay attainable is the repetition period (P) of the
laser train, which is assumed longer than any relaxation time being studied
so that tcp(P)>tcp~`!50. For analysis, data are normalized so that
TCP~`!51 andS(`)50.5.

FIG. 3. Time behavior of a correlation peak. An asymmetric correlation
peaks(t) is shown—the same components exist for tcp~t!. The horizontal
scale is exaggerated. The pulse width~PW! could be&0.1 ps. Generally
there could be fast~,PW!, medium~1–10 PW!, and slow~up to 1–3 ns!
relaxation components. The medium component is not shown. The fast com-
ponent~shaded! consists of incoherent~in! and coherent artifact~CA! com-
ponents. The slow component causes the shoulder heightL. The slow com-
ponent amplitude is 50% att50. The repetition period (P), typically ;10
ns, is assumed much longer than the slow relaxation so thats(P)'s(`).
For an asymmetric correlation of a pulse train, negative delays greater than
the pulse width are equivalent to positive delays ofP. This is used to
experimentally determine the baseline ofs(t) and hence tcp~t!.
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isin~0!5 isca~0!. ~26!

That is, the incoherent component is strictly 50% of the
tcp~t! or s(t) in the i case, independent ofY values or the
pulse shape assumed. This key point will help us determine
the incoherent component height in the' case, since for
semiconductors'sin(0)> isin(0).

By manipulation of Eq.~16! one can show thatj(w,2t)
5j(w,t). Thus, the coherent artifact component is always
symmetrical and centered att50, even for the asymmetrical
correlations. By exploring Eq.~16!, one finds that the CA
shape does not change significantly with the material im-
pulse responseAxyyx(w). Instead, it depends most strongly
on the laser pulse characteristics. Thus, the CA width cannot
be used to learn material properties. However, the CA height
can—it will yield Tu .

Since TCP(t)5S(t)1S(2t), one may wonder why we
recommend measuring both'TCP(t) and'S(t). Figure 4
illustrates that for the purpose of accurately determining the
horizontal ~delay-space! shape of the correlation due to the
fast component, measuring TCP~t! is superior, since it does
not require knowledge of thet50 position that theS(t)
1S(2t) operation requires. Accurate shapes are required to
resolve the small increase in width of the TCP over the AC
for fast relaxations. The zero delay position is hard to mea-
sure forS(t) because the maximum ofS(t) does not occur
at t50, and because the presence of any fast components,
including a coherent artifact, will confuse the side of the step
due to the slow components. The only reason for measuring
S(t) is to determine the baseline for the TCP.

Although some of the data are recorded in the symmetric
form, mathematically it is convenient to relate all the corre-
lation components in their asymmetric forms. The heights
and shapes in the two different forms are related by

tcp~0!52s~0!, ~27!

tcp~utu.several PW)5s~t.several PW!. ~28a!

The regiont.~several PW! is called the ‘‘shoulder’’ of the
pulse. Also useful is

s~t.several PW!>2s~0! ~28b!

for slow relaxation components only.

IV. ESSENCE OF METHOD

We seek the fraction of'tcp(t) which is the coherent
artifact. The key feature of our technique is that we measure
both thei and' correlation cases. Fundamentally, this leads
to a determination of the CA because both cases contain the
CA, but in different ratios.

Figure 5 illustrates the method, which is fundamentally
iterative because the steps depend to various degrees onTu

andG(t), which initially are unknown. The dependence is
particularly strong ifTu is comparable to PW.

The data are first normalized so that TCP~`!51 and
S(`)50.5.'s(t) is measured only for the purpose of deter-
mining its step height'L @Fig. 5~a!#. This yields the baseline
for 'tcp directly, and foritcp after consideringY values and
Tu . With the baselines established, exactly half the height of
itcp(0) is the incoherent portion@Fig. 5~b!#. itcpin(0) is then
used to find'tcpin(0). For example, for semiconductors
'tcpin~0!>itcpin(0). Subtracting'tcpin(0) from the total
height of'tcp(0) yields the height of the' CA @Fig. 5~c!#.
We suppose the CA shape is already known. Then scaling it
by its height, we can subtract the CA shape from'tcp(t) to
obtain'tcpin(t).

A. Fitting for Tu and G(t )

After obtaining'tcpin(t) and
'tcpca(t), we can fit for

G(t) andTu . By Eq. ~13! we have

FIG. 4. Relation of asymmetrics(t), and symmetric tcp~t! correlation
peaks. One could calculate tcp~t!5s(t)1s(2t). However, we recommend
tcp~t! be measured instead, sincet50 is then not required to accurately
measure the shape due to the fast component~shaded!. For s(t), t50 is
uncertain experimentally since it is not at the maximum, and the presence of
fast components confuse the step shape due to the slow components. The
sole reason for measurings(t) is to provide the baselines(`), and hence
tcp~`!.

FIG. 5. The method for separating the coherent artifact~CA! from the
incoherent~IN! portion. Bothi and' correlation peaks contain coherent and
incoherent components, but in different ratios.~a! 's(t) shoulder height
~'L! provides the baseline for'tcp(t) and itcp(t). ~b! The fraction ofi
incoherent component is strictly 50%. This yields the' incoherent ampli-
tude.~c! Subtraction from the total' amplitude yields'CA amplitude. The
CA shape is independently determined. Deducting its shape from'tcp(t)
yields the incoherent portion tcpin~t!. ~d! The width of the upper portion of
tcpin~t! compared with AC~t! yields the fast relaxation.~e! The height of CA
yieldsTu . This whole procedure is iterated because the comparisons~a!–~e!
depend on relaxation times,Tu , AC width, CA width, andY values to
various degrees. The latter three quantities can be independently determined
or presumed. The data are initially normalized so that TCP~`!51 andS(`)
50.5.
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'tcpin~t!5E
0

`

dwAxxyy~w!@AC~t2w!1AC~t1w!#.

~29!

This is a convolution of AC(t) with an unknown impulse
response. The AC is measured experimentally. Any increase
of the width of tcpin~t! over AC~t! will be due to relaxation
processes@Fig. 5~d!#. These can be approximately found by
evaluating Eq.~29! for an assumedA(w) and comparing
calculated and measured tcpin~t!. ~Approximately, since de-
convolution is not a determinate process.! Relaxation com-
ponents having widely disparate decay times will be more
reliably identified than components of similar decays. Refer-
ence 20 discusses the use of linear predictive least-squares
fitting to this kind of data.

OnceAxxyy(t) is found, it can be related toG(t). For the
case of GaAs, G(t)'Axxyy(t) because Tu,PW and
Yxx
2 'Yxxyy.
Fitting the theory to the'CA height yields Tu . If

Tu!PW, the'CA height grows linearly withTu/PW. The
value ofTu is interesting physics in itself.

B. The CA shape

The CA shape can be measured by the TCP of a dye such
as Nile blue in ethylene glycol. BecauseTu@PW for dyes
when PW;0.1 ps, the coherent artifact can dominate the
portion of the TCP resting above the slow component shoul-
ders. This was shown to be the case for this dye.21,22

If the laser pulse is transform limited, the AC can be
used to simulate the CA shape. The CA will never be wider
than the AC, and will only be narrower if the pulse is
chirped.

V. EVALUATION FOR GAUSSIAN PULSE

To facilitate investigating the behavior of the various
correlation components, we model the pulse as Gaussian and
G(t) as a sum of exponential decays. This produces analyti-
cal expressions in the evaluation of Eqs.~11!–~19!. Second,
the Gaussian is a reasonable approximation to pulses ob-
tained from some lasers.

A GaussianEa(t) will produce Gaussian intensity enve-
lope and Gaussian autocorrelations. Since often the pulse
autocorrelation is the most convenient measurement of the
pulse width, let PW represent the autocorrelation full width
at half-maximum~FWHM!. Then we have

Ea~ t !5exp~2t2/a2!, ~30!

I ~ t !5exp~22t2/a2!, ~31!

AC~t!5E
2`

`

dtI~ t !I ~ t1t!5V exp~2t2/a2!, ~32!

where

a[PW/A2 ln 2 ~33!

is the half-width at exp~21! height, and

V[Ap/2 ~34!

is a frequently used constant.

Let G(t) be a sum of exponential decays of time con-
stantsTi weighted by amplitudesa i :

G~ t !5(
i

a i exp~2t/Ti ! ~35!

with ( ia i51 so thatG(0)51. The exponential representa-
tion is convenient because it allows us to analytically com-
bine the population relaxations with the dephasing relax-
ation, which was presumed to decay exponentially in Eq.~3!.

Combining Eqs.~3!, ~11!, ~30!, and ~35! we have for
either DI

'DI5iDI5aVE
0

`

dw exp~2w2/a2!Axxxx~w! ~36!

5aVE
0

`

dw exp~2w2/a2!@exp~2w/Tu!

3~Yxxxx2Yxx
2 !1Yxx

2 #(
i

a i exp~2w/Ti ! ~37!

5a2V(
i

a i$@Yxxxx2Yxx
2 #U~Ti %Tu,0!

1@Yxx
2 #U~Ti ,0!%. ~38!

The operator% means ‘‘sum as rates’’:

Ta%Tb[~Ta
211Tb

21!21 ~39!

so that, just as resistors in parallel, the smaller value will
control the final value. The functionU(T,t) is defined

U~T,t![E
0

`

dw exp$2~w2t!2/a2%exp$2w/T%, ~40!

U~T,t!5V exp@2~t/T!#exp@~a/2T!2#

3erfc@~a/2T!2t/a#. ~41!

The other correlation components are evaluated similarly:

'sin~t!5a2V(
i

a i$@Yxxyy2Yxx
2 #U~Ti %Tu ,t!

1@Yxx
2 #U~Ti ,t!%, ~42!

'sca~t!5a2V exp$2t2/a2%(
i

a i$@Yxyyx#U~Ti %Tu,0!%,

~43!

isin~t!5a2V(
i

a i$@Yxxxx2Yxx
2 #U~Ti %Tu ,t!

1@Yxx
2 #U~Ti ,t!%, ~44!

isca~t!5a2V exp$2t2/a2%(
i

a i$@Yxxxx2Yxx
2 #

3U~Ti %Tu,0!1@Yxx
2 #U~Ti ,0!%. ~45!

Again, we noteisca(0) 5 isin(0).
The functionU(T,t) has the behavior illustrated in Fig.

6. We are interested in the heights att50, by which we
compare the correlation components. ForT/a!1
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U(T,0)→T/a, and forT→`, U(T,0)→V. Thus those re-
laxation processes that are faster than the pulse width will
produce small amplitude correlation components that grow
linearly with relaxation time. For relaxations much slower
than the pulse width, the component will contribute to the
shelflike nature of thes(t) correlation. Since( G(t)51, the
total shoulder height that includes all components will never
exceedAp/2 measured att50, orAp measured many pulse
widths away.

VI. ANALYSIS FOR A TWO-COMPONENT SYSTEM

To illustrate the qualitative behavior of the correlation
components let us examine a system having only disparate
fast and slow relaxation timesTf andTs , respectively, where
Tf!a!Ts and having weightinga f'as wherea f1as51.
Let Tf be fast enough compared to the pulse width that we
can approximateU(Tf ,0)→Tf /a, andTs slow enough that
we can approximateU(Ts,0)→V.

Equation~42! evaluated att50 is

'sin~0!/a2V5a fYxx
2 U~Tf ,0!1a f@Yxxyy2Yxx

2 #

3U~Tf %Tu,0!1as@Yxx
2 #U~Ts,0!

1as@Yxxyy2Yxx
2 #U~Ts%Tu,0!. ~46!

Suppose we have the semiconductor case, whereTu,Tf .
Then after using the approximations just described we have

'sin~0!/a2V5a fYxx
2 ~Tf /a!1@Yxxyy2Yxx

2 #~Tu /a!

1as@Yxx
2 #V, ~47!

where we useda f1as51. We break this expression into
fast and slow components,fast'sin(0) and slow'sin(0), be-
cause the slow components are associated with a shoulder for
t.a having twice thet50 height, whereas the fast compo-
nents are not. The last term of Eq.~47! is the slow compo-
nent. We can ignore the constanta2V, because it appears for
every component.

The expression for the coherent artifact can be similarly
evaluated. Although the coherent artifact could be called a

fast component~since it produces no shoulder!, we distin-
guish it from the fast incoherent component. There is no
slow coherent component.

Analogous to Eq.~47!, we evaluate all thet50 compo-
nent heights for the' and i cases and list them in Tables II
and III, for the semiconductor and dye molecule cases. In the
semiconductor caseTu,Tf!a!Ts,P, and the dye mol-
ecule caseTf!a!Tu,Ts,P.

Note that in the dye molecule case, thei and' cases are
in the ratioYxxxx/Yxxyy53 ~Table I! for every component,
incoherent and coherent@Fig. 7~a!#. The CA is 50% of the
total correlation, for bothi and' cases. This can create
TCPs where the fast part consists almost entirely of CA, if
Tf!a or if a f!as .

For the semiconductor case, note that sinceYxxxx'Yxxyy

~Table I! andTu/a is assumed small, the fast and slow inco-
herent components are, or nearly are the same between thei
and' cases@Fig. 7~b!#. Thus the baseline of'tcp(t) found
from the shoulder heightL of 's(t) applies almost directly
to itcp(t) as well. That is, the incoherent portions of'tcp
and itcp are nearly the same@Figs. 5~b! and 5~c!#. This is
particularly true of the slow component.

We can derive a simple estimate for the fraction of co-
herent artifacts based on two easily measured parametersR
andQ ~Fig. 8!. R is the ratio of the fast portion of tcp~t!
heights, that is, the portion that lies above the shoulder, be-
tween thei and' cases.Q describes the height ofs(0)
compared to its shoulder.

R[
itcp~0!2itcp~shoulder!

'tcp~0!2'tcp~shoulder)
, ~48!

Q[
'sig~0!

'sig~shoulder)
. ~49!

The ‘‘shoulder’’ is a delay longer than the autocorrelation or
fast relaxation time, but slower than the slow relaxation time.

FIG. 6. The functionU(Ti ,t) is the convolution of the Gaussian autocor-
relation AC~t! with exponential decay of relaxation timeTi . ~a! vs delayt
for several relaxation times. For short relaxation times the convolution is an
approximately symmetrical peak whose height grows linearly withTi /a ~b!.
For slow relaxation times the convolution is steplike, with maximum height
Ap.

TABLE II. Dye molecule case. Heights of fast and slow incoherent, and
coherent artifact components att50 for s(t) whenTf!a!Tu,Ts,P and
using the limiting approximations forU(T,0). Each entry should be multi-
plied byaV2. Note that thei and' cases are in the ratioYxxxx/Yxxyy53 for
every component.

i case ' case

Fast~fast incoherent! a f(Tf /a) Yxxxx a f(Tf /a) Yxxyy

Slow asV Yxxxx asV Yxxyy

CA ~fast coherent! Fast1slow Fast1slow

TABLE III. Semiconductor case. Heights of fast and slow incoherent, and
coherent artifact components att50 for s(t) whenTu,Tf!a!Ts,P and
using the limiting approximations forU(T,0). Each entry should be multi-
plied byaV2. Note that sinceYxxxx'Yxxyy andTu/a is small for the semi-
conductor, the fast and slow incoherent components are, or nearly are the
same between thei and' cases.

i case ' case

Fast~fast incoherent! a f(Tf /a) Yxx
2

1a f(Tu/a)[Yxxxx2Yxx
2 ]

a f(Tf /a) Yxx
2

1a f(Tu/a)[Yxxyy2Yxx
2 ]

Slow asV Yxx
2 asV Yxx

2

CA ~fast coherent! Fast1slow Yxyyx (Tu/a)
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We seek the fractional height of the CA, as a fraction of the
portion of the measured tcp height lying above the shoulder.
Define this fraction as ‘‘frac’’:

frac[
'tcpca~0!

'tcp~0!2'tcp~shoulder)
5

'sca~0!
'sca~0!1'fastsin~0!

.

~50!

Since we are primarily interested in the semiconductor case,
we will assume that the slow components have the same
height between the' andi cases. Using the heights listed in
Table III for the semiconductor, and noting that the slow
component is twice as high at the shoulder as att50, we get
after some algebra,

frac512
R

2b
1

1

2b~2Q21!
. ~51!

b is the ratio between the fast component heights

b[ i fastsin~0!/'fastsin~0!'1, ~52!

for a semiconductor.

Inspecting the fast components of Table III, we see for
semiconductorsb'1 if Tu,Tf , since [Yxxxx2Yxx

2 ] and
[Yxxyy2Yxx

2 ] are several times smaller than (Yxx)
2, accord-

ing to Table I.
Note that theR, Q, and frac definitions are very practi-

cal, since they refer to the portion of the TCP~t! or S(t)
lying above the shoulder, which is the experimentally ob-
served background level.

We remind the reader again that Eq.~51! is not appro-
priate for the dye case, because of the assumption that the
slow components have the same heights between the' andi
cases. Furthermore, this result is not intended to be a final
result, but the initial guess of an iterative procedure. This is
because it was assumed there were no medium scale decay
components anda!Ts , so that the TCP shoulder was level
and well defined. In reality, the presence of decays compa-
rable to the pulse width would confuse Eq.~51!.

VII. DISCUSSION

A. Small signal regime

Equation~2! presumes the small signal regime, since for
arbitrarily large optical intensities Eq.~2! predicts arbitrarily
large induced polarization, when in reality the polarization
must be limited. The integral in Eq.~2! in essence expresses
the number of carriers excited from the valence to conduc-
tion band, in the semiconductor idiom, or the number of
excited dye molecules. Obviously this number is limited by
the number of carriers or number of dye molecules in the
sample.

Given that we are in the small signal regime, this implies
that if the relaxation rates are carrier density independent
then the physical thickness of the sample or the distribution
of absorptivity with depth is immaterial. This is because the
carriers are not competing with each other for a limited num-
ber of conduction band sites. However, some semiconductor
scattering processes, such as carrier–carrier scattering, are
carrier density dependent.4 Thus, to minimize the variation
of excited carrier density with depth, the sample should be
optically thin.

An optically thin sample can be in either the large or
small signal regime, depending on the number of photons in
the pulse relative to the number of absorbing centers inte-
grated through the sample depth. This should be confirmed
experimentally by measuring the fractional TCP height ver-
sus laser power. For low powers, the relationship should be a
power law with a slope near unity. As the power passes a
threshold, the slope will begin to decrease indicating a
change from the small to large signal regime. The large sig-
nal regime should be avoided even for carrier density inde-
pendent scattering rates, since it will limit the fractional
height of the TCP and therefore make it appear broader than
this theory predicts, yielding erroneous relaxation times.

B. Procedure overview

To separate the various correlation components and fit
for relaxation and dephasing times, we recommend the itera-
tive procedure outlined in Fig. 5. By comparing calculated
and experimental signals between' andi cases, the coherent

FIG. 7. Example cases for two extremes ofTu/PW. We do not show any
medium time-scale relaxation, only fast and slow.~a! For a dye molecule
Tu@PW. Because of Eq.~3!, the coherent artifact~CA! height equals the
incoherent portions in both' and i cases. However, the overall size is
Yxxxx/Yxxyy53 times different between the two cases.~b! For a semicon-
ductor we could haveTu!PW. By Eq.~3!, the incoherent terms have similar
magnitude ini and' cases. However, the coherent terms are different. For
the i case, it is as large as the incoherent term. For the' case it is much
smaller and grows asTu/PW.

FIG. 8. Definition ofR andQ. H is the height of tcp~t! above its immediate
shoulders, measured between' and i configurations. The ratio isR. Q
describes how high's(0) is relative to the shoulder height. Note, the peak
of 's(t) is not the same as's(0).
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artifact height can be found. Once separated, fitting to the
shapes and heights of the component correlations yieldsTu

andG(t). These both manifest interesting physics.
The correlation component heights and shapes would be

calculated either using the Gaussian model Eqs.~42!–~45!,
or the exact expressions Eqs.~11!–~19! calculated numeri-
cally using the experimentally measured autocorrelation and
presumedG(t) andTu . For the numerical evaluation,G(t)
could be nonexponential. The equations can easily be modi-
fied for unequal intensities between the two arms. Initial
guesses forTu andG(t) could be obtained with the help of
Eq. ~51! for semiconductor samples. Knowledge of theY
coefficients for the particular sample being studied is re-
quired. These can be calculated from Refs. 4 and 17 using
the semiconductor band structure. TheseY coefficients do
not require knowledge of the sample dynamics.
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