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Previous velocity interferometers used at research laboratories for shock physics experiments mea-
sured target motion at a point or many points on a line on the target. Recently, a two-dimensional (2d)
version (2d-velocity interferometer system for any reflector) has been demonstrated using a pair of
ultrashort (3 ps) pulses for illumination, separated by 268 ps. We have discovered new abilities for
this instrument, by treating the complex output image as a hologram. For data taken in an out of focus
configuration, we can Fourier process to bring narrow features such as cracks into sharp focus, which
are otherwise completely blurred. This solves a practical problem when using high numerical aperture
optics having narrow depth of field to observe moving surface features such as cracks. Furthermore,
theory predicts that the target appearance (position and reflectivity) at two separate moments in time
are recorded by the main and conjugate images of the same hologram, and are partially separable
during analysis for narrow features. Hence, for the cracks we bring into refocus, we can make a
two-frame movie with a subnanosecond frame period. Longer and shorter frame periods are possible
with different interferometer delays. Since the megapixel optical detectors we use have superior spa-
tial resolution over electronic beam based framing cameras, this technology could be of great use in
studying microscopic three-dimensional-behavior of targets at ultrafast times scales. Demonstrations
on shocked silicon are shown. © 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4884880]

I. INTRODUCTION

An important optical diagnostic for shock physics over
many years has been a Velocity Interferometer System for
Any Reflector (VISAR).1–4 This measures target motion to
high precision using phase shifts of fringes produced by in-
terfering light reflected from the target at two different times,
slightly delayed. Until recently, this diagnostic has been lim-
ited to measuring motion at points or lines across a target us-
ing quasi-continuous wave illumination.1–3

Recently, our group introduced an ultrashort pulse two-
dimensional (2d) imaging version of a VISAR.5–10 We have
used it at the Rochester’s Omega Laser system9 and at
LLNL’s Jupiter Laser system11 (Fig. 1) to measure 2d veloc-
ity and reflectivity maps of shocked Si, diamond, and other
materials in a snapshot mode. Not only does this have an
extra imaging dimension compared to streak camera VIS-
ARs, but the spatial resolution is also much higher. The 4000
× 4000 pixel CCD detector we use has many more resolution
elements (∼2000 in each dimension, limited by the target lens
blur) than does a typical electron beam imaging device such
as a streak camera, which might have ∼50 resolution elements
across its output phosphor screen.

The higher spatial resolution is needed to resolve fine
cracks in the surface of shocked targets undergoing brittle
fracture, and to simultaneously record four phase stepped ver-
sions of the image, which can be subsequently overlaid accu-
rately to 1-pixel precision to obtain phase and magnitude in-
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formation. Our apparatus also simultaneously uses a conven-
tional line-imaging streak camera VISAR looking at a portion
of the same target. In shots where the 2d-VISAR observes fine
cracks, the line-VISAR does not resolve them – they manifest
merely a change in average target reflectivity.

A consequence of using an ungated integrating detector
such as a CCD array is that we must use it in a snapshot
mode where the time resolution is provided by the illumina-
tion through an ultrashort laser pulse of 3 ps (actually a pair
of pulses). This is because with current technology we cannot
affordably purchase a movie camera that has sufficiently high
spatial resolution together with picosecond shutter times. But
in principle, a movie camera is what one desires for a fringe
detector of an ultimate VISAR, to provide both time history
and 2d spatial imaging.

A. Matched-delay interferometers in series

A pair of illumination pulses is used, rather than a sin-
gle pulse. This is because the 3 ps laser pulse width is much
shorter than the interferometer delay (268 ps), so that no in-
terference would result from use of a single ultrashort pulse
and a single unequal arm interferometer. To accurately mea-
sure the target change in position (velocity), the pulses must
arrive at the target separated in time (t1, t2). Yet, for the re-
flected pulses to produce interference at the detector, they
must overlap in time. This dilemma is solved by the use of
two matched-delay interferometers in series, before and af-
ter the target, which produces four pulses from a single laser
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FIG. 1. The 1d- and 2d-velocity interferometers (VISAR) at LLNL’s Jupiter
Laser Facility observed the onset of fracture networks in shocked Si.11 The
conventional 1d-VISAR lacked sufficient spatial resolution to observe the
cracks seen by the 2d-VISAR, but provided time history. Published under
license in Erskine et al., J. Phys.: Conf. Ser. 500, 142013 (2014). Copyright
2014 IOP Publishing Ltd.

pulse (Figs. 2–4). The two inner pulses of the four interfere,
creating 50% visibility fringes.

The rectangles in Fig. 2 represent glass etalons that de-
lay light while maintaining apparent ray path angles,2, 12 by
creating a virtual image of the mirror behind it. This so-called
field-widened or superimposing interferometer scheme allows
high visibility fringes from diffusively scattering targets.

The pair of illumination pulses is created by a first (in-
put or illumination) interferometer that precedes the target,
having the same delay as the 2nd (output or detecting) inter-
ferometer that follows the target. Changes in target velocity
create proportional shifts in the relative timing of the inner
pulses that overlap at the detector, creating a corresponding
fringe phase shift with the same velocity per fringe (VPF)
proportionality as a conventional VISAR. This technique5–7

was originally demonstrated on incoherent white light, then
applied to ultrashort laser pulses.9 Other low coherence illu-
mination such as chirped pulses are feasible now for velocity

FIG. 2. The white light or dual-interferometer velocimeter scheme5–10 uses
a pair of matched-delay interferometers in series to produce fringes, in spite
of pulsewidths (3 ps) shorter than the interferometer delay (268 ps). A single
laser pulse entering first interferometer creates two pulses (1 and 2) interro-
gating target at different times. At the detector four pulses arrive, but only
the inner two temporally overlap and interfere. Push-pull math isolates these
from the constant energy of the outer two, which does not vary with phase
quadrature dither. Motion of target during the pulse pair interval creates a
small time shift between inner pulses proportional to velocity, which mani-
fests a fringe phase shift. Rectangles are glass etalons that delay light while
maintaining apparent ray path angles.2, 12 Reprinted with permission from
Rev. Sci. Instrum. 81, 035101 (2010). Copyright 2010 American Institute of
Physics.

interferometry. (The latter would allow use of wavelength as
a new time recording parameter.)

B. Refocusing numerically post-experiment

We have discovered an interesting and useful improve-
ment to the 2d-VISAR, which is a numerical post-processing
(Fig. 5), easily implemented via Fourier transform, of the
complex 2d-image data which normally outputs from the
VISAR analysis. That is, we treat the data as a hologram and
recover some three-dimensional (3d) information. If the orig-
inal data were taken in an out of focus condition, we have
demonstrated13 the ability to bring narrow features such as
cracks back into focus (Fig. 6), post-measurement, when oth-
erwise they are blurred. This is a very useful ability, since
often it is difficult to precisely focus specular targets (such as
clean silicon or diamond) and anticipate their motion prior to
the moment of illumination, especially with the narrow depth
of field of the fast lenses typically used to collect a large solid

Camera lens

Diffracted 
wavefronts

Detector
(Out of focus)

Zdf

Interference

Phase stepping 
dithers this interval

From 
Target & 
Interferometers

1

1

2

2

In focus 
wavefronts

E1

D1D*2

E2

FIG. 3. During the experiment the target image in the camera is assumed defocused by amount Zdf so that diffraction ring components (D1, D2), are recorded
by detector. Only the inner two pulses (electric fields at focus E1, E2) interfere to produce a fringing signal which varies with phase stepping in the 2nd
interferometer. Constant (phase stepping independent) diffraction ring contributions by dust specks along the path cancel in the push-pull math.
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FIG. 4. Holography involves two interfering wavefronts (of electric field,
E1, E2), but classic holography (a) can assign the holographic information
solely to features on the wavefront reflected from the target, since the refer-
ence wavefront is smooth. (Focal region shown, the detector records the defo-
cused diffracted patterns.) In our holography, both wavefronts reflect off the
target, and both can contain reflectivity (black dot) or phase (tophat) features
which change between times t1 and t2. (b) Black dot represents increased ab-
sorption of a opening crack. (c) Tophat represents localized changed height
(in z) of target, i.e., a phase (velocity) feature. Surprisingly, theory shows
that reflectivity and phase (velocimetry) are approximately separable for each
wavefront for narrow features in our technique.

angle of light reflected from a target. This ability could also
be useful for exploring the 3d debris region of a shocked tex-
tured target, or targets having 3d shape not residing in a single
plane.

C. Two-frame movie effect

Furthermore, theory and numerical simulation predicts,
and preliminary data support, the notion that the target ap-
pearance (position and reflectivity) at two separate moments
in time are simultaneously recorded by the main and conju-
gate images of the same hologram, and are partially separable
during analysis for narrow features, provided the target was
recorded in a defocused configuration where the main and
conjugate images are well separated in z-direction (longitudi-
nal). Hence, for the cracks we bring into refocus, we can make
a two-frame movie (Fig. 7) with a subnanosecond frame pe-
riod. Longer and shorter frame periods are possible with use
of different interferometer delays.

This two-frame movie behavior is both surprising and not
surprising. It is not surprising because it is consistent with
the use of a pulse pair rather than a single pulse to interro-
gate the sample. Yet, it is surprising because a conventional
VISAR interferometer theory for the recorded fringe intensity
involves an electric field cross term E1E

∗
2 , which becomes

FIG. 5. (a) Numerical refocusing on recorded complex image W (x, y). A
Fourier operation transforms a wavefront from the focal plane to Fourier
plane (approximately same as at pupil plane for collimated light), where a
parabolic phase difference is added to mimic changing camera lens power
and hence changing focal position by !Z. (b) For simplicity, we assume the
target and camera lens have same f/# and the light is collimated in between
them, and we account for the 17× magnification by assuming the pixels at
detector are 0.53 µm instead of actual 9 µm. The f/3 target lens has focal
length f = 146 mm.

r1r2e
i2π(θ1−θ2), where θn is wavefront phase reflected from tar-

get and encodes surface position along z, and rn is the reflec-
tivity coefficient, at times 1 or 2. The point is that only the
difference in phase, not the individual phases, is being sensed,
and only the product of the reflectivities, not the individual re-
flectivities, is being sensed. This suggests a two-frame movie
cannot be made.

But that term, appropriate for theory of a single point or
line-VISAR, does not account for the effect of 2d-imaging in
a defocused configuration. Theory and numerical simulations
show that for the 2d-VISAR, the main and conjugate holo-
graphic images approximately embody the appearance of the
target at two separate times t1 and t2 = t1 + τ a, for narrow
features, where τ a is the delay of the first interferometer.

D. A kind of holography

We note that a 2d-VISAR is a kind of holography, since
in both cases two wavefronts at optical frequency are inter-
fered (Fig. 4) and the so-produced fringes at zero or relatively
low frequency are recorded across a 2d image. However, with
the VISAR both of two wavefronts reflect off the target (and
during that interval the target changes its Z position slightly
due to velocity, and/or its reflectivity due to shock loading).
Whereas in a conventional holography one of the two wave-
fronts, called the reference wavefront, does not reflect off the
target and is ideally smooth and uniform, so that features
in the fringes represent just the wavefront reflected from the
target.

In our holography, the output is kind of a double expo-
sure, with the main and conjugate images are along the same
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FIG. 6. Demonstration of numerical focusing on shocked Si (shot 020910-04), for target reflectivity (a) and (b), and for target velocity (c) and (d). By target
reflectivity we actually mean |W (x, y)|. Black is zero magnitude. Target velocity is proportional to W phase, showing the deviation from local average. (a) and
(c) are as-measured having blurred features. Note diffraction rings in (a). (b) and (d) are numerically refocused by ∼300 µm to main image, demonstrating
recovering of narrow cracks not resolved in as-measured data (a) or (c). (b) Crack with a refocused width of about 4 pixels, ∼2 µm, (feature [J] of Fig. 9).
(d) Interesting trigonal crack feature (feature [L] of Fig. 9) manifesting symmetry of Si at [111] orientation. Scale is 0.53 µm per pixel. (a) and (b) Reprinted
with permission from J. Appl. Phys. 114, 133504 (2013). Copyright 2013 American Institute of Physics. (c) and (d) Published under license in Erskine et al., J.
Phys.: Conf. Ser. 500, 142013 (2014). Copyright 2014 IOP Publishing Ltd.

optical path, displaced by the shot-time defocus amount (Zdf).
For narrow features which blur rapidly with focus, the narrow
features of one image can be distinguished from the blurry
defocused version of the same feature in the other image.

FIG. 7. Interpreted “two-frame movie” showing time development of cracks
in shocked Si for two places, ∼100 µm wide, labeled J and K. These
are magnitudes of conjugate and main holographic images numerically re-
focused from an experimental exposure by !Z = ±0.26 (±300 µm) for
main(−)/conj(+).

Hence, the larger Zdf, the larger the features to be disentan-
gled from the double exposure (we use Zdf = 0.15 in our
model). If the target was measured in a focused configura-
tion (the intention of the experimenters taking our data), then
Zdf = 0, the main and conjugate images superimpose, and the
time-isolating (two-frame movie) effect does not occur. The
shocked Si data we show here are just a few instances where
it was accidentally defocused.

E. Comparison to prior holography

Holography has been used previously to measure ejecta
from shocked surfaces,14 and a shock front.15 These used a
conventional two beam (reference and object) arrangement to
create fringes on the detector. Work of Greenfield et al.16 at
LANL also used pulsed illumination to freeze motion of a
shock sample observed in 2d by an interferometer. However,
their system does not record simultaneous phase quadrature,
as our system does. Consequently, their spatial resolution is
significantly less because they (essentially) need to use ad-
joining pixels to provide the phase quadrature.

Recent ultrashort pulse digital holography work17 at
Kyoto Institute of Technology differs from our topology by
using a single illumination pulse where we use a pair, and
having the target internal to the interferometer instead of ex-
ternal as in our technique. With a single illumination pulse
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they are measuring a single target image and not a change in
position over significant time. Thus, they cannot measure the
target velocity to the same precision that we can with a double
pulse.

Since our target is external to the interferometers, our
target can be a safe distance away from the operators and
equipment, and the target position or surface texture does
not change the interferometer alignment. In our configuration,
homodyning is performed so it can work with complicated
wavefronts from diffusively scattering targets.

II. APPARATUS

Figure 1 shows the target arrangement at the 2d-VISAR
at LLNL’s Jupiter Laser facility to study shocked Si.11 A 6 ns
532 nm Janus Laser pulse hitting 10 µm of CH creates a drive
pulse buffered by 50 µm of Al. The drive pulse has a square
profile ∼500 µm wide. The 2d and 1d VISAR optics images
a ∼1 mm region on the back of the Si. The line-VISAR si-
multaneously measures the back of the target and provides
a time history, with a spatial resolution of 30-50 µm along
a 1 mm line of 15 µm width. The moment of the snapshot
2d-VISAR exposure is recorded by a fiducial. The 2d-VISAR
probe beam is a 3 ps 1 mJ pulse of 400 nm doubled light from
a Ti-sapphire laser. The target back is imaged through the de-
tecting interferometer of the VISAR system, having a 268 ps
delay between its arms. To create a quadrature phase record-
ing, the image is recorded four times simultaneously in four
quadrants of same detector (Fig. 8) with 1/4 wavelength delay
shift between quadrants.9, 10

III. PUSH-PULL DATA ANALYSIS

The data analysis technique10 for processing the four
quadrants into velocity data uses push-pull math, similar to
a conventional single point push-pull VISAR,2 but for each
pixel of the image. On a 4000 × 4000 pixel CCD detector we
record four 2000 × 2000 quadrant images of the target. The
quadrants are labeled S0, S90, S180, S270 and ideally have 90◦

interferometer phase stepping relationship. A simple astig-
matic adjustment corrects non-ideal phase relationships.10 For
each pixel (x, y), we form two 2d outputs, nonfringing inten-
sity (I), and complex fringing (W )

I = S0 + S90 + S180 + S270, (1)

W = (S0 − S180) + i(S90 − S270). (2)

The complex fringing output is further expressed in polar co-
ordinates and yields phase (θ ) and magnitude (Mag) outputs

tan 2πθ = ℑW

ℜW
, Mag = |W |. (3)

The magnitude |W | is similar to the intensity I but without
detector and incoherent light offsets. (Comparison of the two
is a useful check of data validity.) The refocusing operates
on W , not I, and hence the |W (x, y)| and θ (x, y) are the two
useful refocused outputs.

FIG. 8. Example 2d-VISAR phase stepped data. (a) A single CCD detec-
tor records four simultaneous interferometer outputs having 90◦ phase rela-
tion. Push-pull math (Eqs. (1) and (2)) converts these to (c) fringing (phase
or velocity) and (b) nonfringing (intensity) images. Fringe magnitude |W |
looks similar to intensity image. Horizontal fringes in (b) are not inter-
ferometer fringes but parasitic fringes between sample and LiF window.
These do not affect velocimetry result (c). Reprinted with permission from
J. Appl. Phys. 114, 133504 (2013). Copyright 2013 American Institute of
Physics.

Conversion from phase θ (x, y) to target velocity is by
multiplication by the velocity per fringe constant (VPF), set
by the average interferometer delay τ as described by the
equation18 for a conventional VISAR, which for a windowless
configuration and τ = 268 ps is V PF = λ/(2τ ) = 705 m/s
per fringe. This is the distance (in units of λ) traveled during
an interval τ , with a factor of 2 for the roundtrip since light
reflects normally off target.

IV. NUMERICAL REFOCUSING

Figure 9 is example defocused data, a nonfringing image
of windowless shocked Si (shot 020910-04). The many worm-
like features are cracks, slightly out of focus. The defocusing
was accidental – focusing on clean specular targets is difficult.

The wormlike features can be brought into narrow crack
appearance via a numerical refocusing operation (Fig. 5): for
a 800 × 800 pixel subset of the image a fast Fourier trans-
forms (FFT) brings W (x, y) in pixel space from the focal
plane to the Fourier plane W (u, v), where u, v are spatial fre-
quencies and range from −400 to 400, and the edges corre-
spond to Nyquist frequencies of ±0.5 pixel−1. For the nearly
collimated light upstream of the camera lens, the wavefront at
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FIG. 9. Wormlike features in this as-measured nonfringing image are defocused cracks having diffraction rings. This is shocked Si without a window, about
1 mm field of view, shot (020910-04). Features in boxes (J), (K), and (L) are shown in other figures. Scale is 0.53 µm per pixel. Reprinted with permission from
Rev. Sci. Instrum. 83, 043116 (2012). Copyright 2012 American Institute of Physics.

pupil plane is approximately the same as at the Fourier plane.
A paraboloidal phase shift &(u, v) in units of cycles

&(u, v) = 0.5!Z(u2 + v2)/C2 (4)

and where C = 20 is an arbitrary constant, is applied to the
phase of W (u, v) to simulate the addition of a thin lens to shift
the focal position proportional to !Z. The inverse Fourier op-
eration is then performed, and we use outputs |W ′| for an or-
dinary nonfringing image and phase θ (x, y) for velocity.

We designate the ' symbol to represent the propagation
(diffraction or refocusing) process which finds the new W re-
located by !Z

W ′ ≡ '!Z[W (x, y)] = iFFT {ei2π&(u,v)FFT [W (x, y)]},
(5)

where FFT is the fast Fourier transform and iFFT its inverse.
Figure 6 shows example numerical focusing on data of

Fig. 9, zooming on crack features “J” and “L” shown in yel-
low and green boxes of Fig. 9. The top panels (a) and (c) are
as-measured data recorded out of focus. Note the diffraction
rings in (a). The true shapes of these features are obscured by
the defocused condition.

The bottom panels (b) and (d) are after numerical refo-
cusing using !Z = −0.26. The rings of (a) have come to-
gether to produce a narrow crack of width about 4 pixels or
2 µm. Note the interesting trigonal feature in (d) which man-
ifests the symmetry of Si at [111] orientation. Hence, refo-

cusing has revealed interesting shapes of features otherwise
obscured, and it works for both the reflectivity (magnitude of
W ) and velocity maps (phase of W ).

One knows when focus has been achieved because many
features distributed around the whole image sharpen simulta-
neously. This is hard to convey in a single still image. To aid
in finding focus, we produce movies with the !Z varying with
the frame number; then we can quickly vary the focus as if it
was an analog lens being moved.

The broad features, in magnitude or phase, are not signif-
icantly changed by the refocusing operation, similar to analog
refocusing. Note that the backgrounds of (c) and (d) are sim-
ilar for broad features. Thus, velocity maps previously calcu-
lated using out of focus data are still valid except for the very
smallest scales (few micrometers).

Figure 10 compares phase and magnitude refocused re-
sults for spot J and K. The phase maps show less fluctuations
than the magnitude maps, since the former is a difference in
wavefront phases (θ1 − θ2) for defocused features and so sys-
tematic irregularities tend to cancel out. Whereas the magni-
tude maps are a product of the two wavefront reflectances r1r2

for defocused features, so any irregularities would not cancel
out. Figure 11 shows that many of the fluctuations seen in the
magnitude in the shot exposure are also seen in a reference
exposure taken prior to the shot and refocused to the same
position as the shot exposure, and therefore are not shock
related.
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FIG. 10. Refocused magnitude |W | and phase maps for main (!Z = −0.26) and conjugate (!Z = 0.26) images. The mag decreases to near zero inside some
cracks. The phase has fewer fluctuations than mag, since it is less sensitive to out of focus systematics (things that affect reference and shot exposures in common)
such as dust specks in optical train, since for those the usual difference (θ1 − θ2) applies, cancelling them. There is only faint velocity disturbance at each crack.
Cracks appear more developed at !Z = −0.26 than at +0.26, so we designate former to be “main” (at t2). Negative !Z implies recorded defocused image is
focused before not after the detector. Rectangles are ∼600 pixels horizontal size or ∼300 µm. They include spots J and K near (600, 750) of Fig. 9.

Figure 12 shows another shot (020910-03) on sili-
con on same day also taken accidentally in a defocused
condition. The defocus amount here is smaller, 0.08 instead
of 0.26.

FIG. 11. Many of the magnitude fluctuations are systematics which appear
in common both on reference and shot exposures, which could be defocused
dust specks on the apparatus optical train. Comparison of |W | of the shot
(a) to a reference exposure (b) taken prior to shot and refocused to same
!Z = −0.26 position as shot shows many of the same fluctuations.

A. Blur from target lens

Figure 13 is a lineout across a crack, showing that the fea-
tures we observe after numerical refocusing may be as small
as 3 or 4 pixels, at 0.53 µm per pixel, thus 1.5–2 µm. Some
of the cracks are quite dark, having nearly zero magnitude
minimum. This is consistent with (not smaller than) the simu-
lated diffraction limited blur from our f/3 target lens as shown
in Fig. 14. A 1-pixel crack creates a partially deep minimum
(unlike what we see in data), but a 2 pixel or wider crack cre-
ates a much darker minimum more like that in the data.

That our f/3 target lens has about half the numerical
aperture of the f/1.3 boundaries of the Fourier/pupil plane is

FIG. 12. A different shot on Si (020910-03), also showing crack develop-
ment. This is a magnitude map (a) as measured (!Z = 0), and at the two
refocused images, (b) !Z = −0.08 (90 µm) for main and (c) !Z = +0.08
for conjugate. The rectangles are 500 × 400 pixels (265 × 212 µm).
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(b)

(c)

(a)

FIG. 13. How narrow cracks appear in magnitude (b) and phase (c) along a
lineout shown as rainbow line across a “π” shaped feature (spot K of Fig. 9)
in refocused image. Minimal width of dark cracks (FWHM of 3 or 4 pixels,
or ∼2 µm) is not smaller than the theoretical 2 pixel blur of an f/3 target lens
(Fig. 14). Black curves are of reference image prior to shot.

consistent with the Fourier transform of the W (x, y) data
shown in Fig. 15. Note that the dark area surrounding the f/3
region has very low noise, demonstrating that our instrument
has very good dynamic range, and that in the future a larger
numerical aperture lens such as f/1.4 could be used effectively
to improve the spatial resolution 2× further, to ∼1 pixel or
0.5 µm.

The boundary of the Fourier (∼pupil) plane is assigned
a value of f# = 0.53/λ = 1.33 using the grating equation ap-
plied to a Nyquist spatial frequency in the focal plane. That
this Fourier/pupil plane scaling is correct is confirmed by ob-
serving in our refocusing model that a solid circular disk at
the focal plane produces an Airy ring pattern at the Fourier
plane having the correct angular size.

B. Physical length units of refocus parameter !Z

In our refocusing mathematics, we use a dimensionless
unit for !Z that scales the amount of parabolic delay &(u, v)
added to W (u, v) to delay it, to change the curvature of the
wavefront so that the focus is repositioned. We calculate a
corresponding physical length for !Z, based on the angle the
delay &(400, 0) makes at the edge of the Fourier/pupil plane
and small angle approximations to the trigonometry.

The size of gap between a circle (which approximates the
parabolic wavefront and whose center is the focus) and an in-
scribed triangle having its apex at the circle center is the edge
value of parabolic shape &(400, 0). One finds that the ratio
between !Z and & is ∼ 2(2f #)2. The f# to use, if one is eval-
uating & at the edge of pupil array, is f# = 0.53 µm/λ= 1.33.
So the ratio dZ/d& = 14, and each dimensionless Z unit cor-
responds to 1.124 mm. For the data example of Fig. 10, where
we observed a focus at dimensionless !Z = 0.26, then &(400,
0) = 52 waves and then !Z = 52 × 14 × 0.4 = 300 µm. We
have no recorded quantitative measurements for target to lens
distance, and the target was destroyed after the shot, so we
cannot confirm, but this amount sounds physically realistic.

V. THEORY

A. Overview

Given knowledge of the optical electric field E at one
location, one can in principle use full-up diffraction theory
(such as Chap. 8 in Born and Wolf19) to calculate (propagate)
the E anywhere else along the path, although the mathematics
may be complicated when expressed analytically. The propa-
gation, which we denote as E′(x, y) = '!Z(E(x, y)) with re-
focus parameter !Z, also applies to the sum of two pulses
– the pulse pair is additive in electric field. This is relevant
since holography operates on the interference between two
wavefronts.

We simplify diffraction theory and just apply a parabolic
delay to the wavefronts at the Fourier/pupil plane to refocus
by small amounts. The Fourier transform of E(x, y) in the fo-
cal plane yields E(u, v) in the Fourier plane, which is one
focal length behind the pupil plane. Since we are using nearly
collimated rays and weak amounts of wavefront curvature, we
approximate the Fourier plane to also describe the pupil plane.
Hence, !& ≈ !&′ in Fig. 5(a). We have for the refocused
field

E′ ≡ '!Z[E(x, y)] = iFFT {ei2π&(u,v)FFT [E(x, y)]}
(6)

and &(u, v) given by Eq. (4).
Each detector quadrant records an intensity Sn(x, y) re-

lated to the electric fields E1 and E2

Sn = |E1 + E2|2 = |E1|2 + |E2|2 + (E1E
∗
2 ) + (E1E

∗
2 )∗.

(7)
Due to the phase stepping in Eq. (2) for W , all the terms
cancel except W ∼ (E1E

∗
2 ). Then since the numerical simula-

tion shows that the time-isolating behavior requires a nonzero
background (white or black features against gray), it is use-
ful to describe deviations D from a background and make the
substitutions E1 = (1 + D1) and E2 = (1 + D2). Then the
complex field is

W ∼ (1 + D1)(1 + D2)∗ = 1 + D1 + D∗
2 + D1D

∗
2 . (8)

We assume a small signal |D| < 1 so that we neglect the 2nd
order term. This is reasonable since the one or both of the
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FIG. 14. Simulated blurring by an f/3 lens and wavelength λ = 0.4 µm for perfectly black cracks of 1 × 10 pixels (b) or 2 × 10 pixels (c), 0.53 µm per pixel.
(a) Fourier plane approximates pupil plane for collimated light, and shows the FFT of crack after it is windowed by the circular pupil of f/3 lens. (The pixel size
relative to λ assigns the edge of pupil plane to f/1.3.) An inverse FFT then produces the blurred image at focal plane (b). (c) The 2 pix width corresponds to
∼1 µm.

components is usually defocused (unless Zdf = 0), and defo-
cusing spatially dilutes the amplitude of D.

Equation (8) has the additive situation, rather than mul-
tiplicative, that we are seeking to explain the time-isolation
effect. The complex conjugate on D∗

2 is important because it
causes the phase to reverse for the hologram component as-
sociated with the other wavefront – it generates the 2nd holo-
graphic image which leads to the time isolation effect, and
as Fig. 16 shows, when the arrow of time reverses polarity it
causes the conjugate and main images to reverse roles. Details
of theory are elaborated below.

B. Theory: In-focus case

Consider the conventional case where the target is well-
focused on the camera detector. The wavefront arriving at the
detector is

E1(x, y) = r1(x, y)ei2πθ1(x,y)ϵ0(t). (9)

We are not concerned with the details of ϵ0(t) which describes
the electric field at optical frequencies, since the detector is in-
tegrating. The rn is a reflectivity coefficient. The target surface
position in z (along optical path) is expressed by the phase θ

so that a change in z of a wavelength λ creates one cycle of
phase change.

The other pulse is delayed by the first interferometer so it
interrogates the sample at two instances separated by τ a

E2(x, y) = r2(x, y)ei2πθ2(x,y)ϵ0(t + τa − τb + δτ ). (10)

The 2nd interferometer reverses the delay shift, by amount τ b

to (τ a − τ b), and we assume the residual offset is smaller than
the pulsewidth (3 ps) so that we have good fringe visibility
(∼50%). This is easy to achieve. We can just assume τ a = τ b

= τ and that target velocity over interval τ creates a change
in z that manifests in a phase shift in the measured fringe. The
δτ is the ∼λ/4 quadrature stepping. Expressing this as a phase
change φn = δτ n/λ,

E2(x, y) = r2(x, y)ei2πθ2(x,y)ei2πφnϵ0(t). (11)

The intensity of a detector quadrant is

Sn = |E1 + E2|2 = |E1|2 + |E2|2 + (E1E
∗
2 ) + (E1E

∗
2 )∗.

(12)
We ignore the first two terms since they contribute constant in-
tensity independent of the phase stepping, and thus will cancel
in the push-pull Eq. (2) for W . Second, the choice of quadra-
ture phase steps create coefficients ei2πφn = (1,i,−1,−i),
which interact with the similar or counter-rotating coefficients
in the equation for W to eliminate all but the (E1E

∗
2 ) term.

Substituting for E1 and E2 we get

W ∼ E1E
∗
2 = r1r2e

i2π(θ1−θ2)⟨|ϵ0(t)|2⟩, (13)
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(b)

(a)

FIG. 15. (a) Fourier transform W (u, v) of data whirl W (x, y) is an approx-
imation to the pupil plane. This shows that the signal energy is in a circle
of diameter consistent with an f/3 target lens, surrounded by a clean dark
background indicating low detector noise. (This plot is invariant to refocus-
ing since that only changes phase not magnitude in pupil plane.) A horizontal
lineout 0.1 pix−1 wide (blue lines) across middle of 2d-FFT is shown in bot-
tom panel (b). An 800 square pixel subset of data centered at (600,800) was
used (see Fig. 9). The dynamic range of our system is excellent. This allows
effective future use of a faster target lens, up to f/1.3.

where ⟨|ϵ0(t)|2⟩ accounts for the integrating action of the
detector.

So the reflectivity perceived by the apparatus is r1(x,
y)r2(x, y). These are entangled together, not able to isolate
r1 from r2. Similarly, the target position measured by the W

fringe phase is only sensed through a change (θ1 − θ2). These
are entangled and the separate target surface profiles are not
isolated.

C. Theory: Defocused case

The numerical simulation shows that the time-isolating
effect does not work for the targets having white features
against zero background, but works for a bright field configu-
ration, which could be white or black features against a gray
background. This suggests re-expressing the defocused wave-
front as a combination of a background and a deviation signal
E′ → (1 + D) so that the as-measured defocused wavefronts

FIG. 16. The direction of the arrow of time determines the phase polarity
of the hologram (diffraction ring in W ) which determines whether a main or
conjugate image is formed later during numerical refocusing. The upper por-
tion of graphics depicts the interfering wavefronts of the two inner pulses at
the target surface, which sense the nature (reflectivity, z position) of the sur-
face at times t1 and t2. The bottom portion of graphics depicts the resulting
out of focus diffraction ring in W at the detector, and how it forms an image as
if we were reconstructing it using actual light from left (instead of numerical
reconstruction). (a) Suppose a dark crack opens with time so that it appears in
wavefront 2 but wavefront 1 remains smooth. The hologram during numeri-
cal refocusing (adjusting !Z) creates an image designated “main.” (b) If the
crack closes with time, then the order of wavefronts is effectively swapped
which causes phase reversal of hologram due to complex conjugate in equa-
tion. During refocusing a different image is formed at opposite polarity −!Z,
called “conjugate.” If the crack is constant in time, then both conjugate and
main images have equal strength. Hence, target dynamics are manifested in
difference between conjugate and main images.

are

E′
1(x, y) = '!Z{r1(x, y)ei2πθ1(x,y)}ϵ0(t)

= [1 + D1(x, y)]ϵ0(t), (14)

(where !Z = Zdf), so that the diffracted or propagated form
of r1(x, y)ei2πθ1(x,y) is represented by a background plus a de-
viation 1 + D,

1 + D1(x, y) = '!Z{r1(x, y)ei2πθ1(x,y)}. (15)

Similarly for the other pulse, except there is also the phase
stepping phasor that we keep together with the ϵ0(t) term, not
with the new 1 + D term

E′
2(x, y) = '!Z{r2(x, y)ei2πθ2(x,y)}ϵ0(t)

= [1 + D2(x, y)]ei2πφnϵ0(t), (16)

1 + D2(x, y) = '!Z{r2(x, y)ei2πθ2(x,y)}. (17)

Then when we form W ′, which is the E′
1E

∗′
2 term, the phase

stepping phasor cancels out the other terms as before, leaving
only

W ′ ∼ (1 + D1)(1 + D2)∗ = 1 + D1 + D∗
2 + D1D

∗
2 . (18)

Because we are defocused, the diffracted energy is spread
over a wider area and thus diminishes in amplitude, so |D| < 1
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FIG. 17. The general hologram W is a sum of two diffraction patterns D1
and D∗

2 , recording target appearance at t1 or t2. We pretend that we are re-
constructing with light from left (when in fact it is done numerically by ad-
justing !Z). Consider D1 to be a hologram component that diffracts only to
form conjugate image at !Z = +Zdf. The D∗

2 has its phase reversed because
of complex conjugate and diffracts in other direction, to form main image
at !Z = −Zdf. Net image is sum of focused and defocused images. As !Z
is adjusted, one image increases blur while the other decreases blur. When
at !Z = ±Zdf, and if Zdf is sufficiently large, then the defocused compo-
nent lacks the narrow features present in focused component, producing the
time-isolating effect. If the target was focused at measurement time, then Zdf
= 0, the conjugate and main images merge, and there is no time isolating
effect.

and thus we can neglect the 2nd order term D1D
∗
2 . Hence, we

get

W ′ ∼ 1 + D1 + D∗
2 (19)

which shows additive rather than multiplicative behavior,
and thus shows how the time-isolating behavior can occur
(Figs. 16 and 17).

D. Theory: Refocused post-measurement case

At this point, we have described the measured complex
data (W ′) in its as-recorded configuration, which is assumed
optically defocused by !Z = Zdf. Now we will describe the
effect of refocusing the data to numerically undo the optical
defocusing.

We apply the numerical refocusing engine ' to the data
W ′ with an opposite amount of refocus amount !Z = −Zdf to
produce a refocused result

W ′′
−Zdf

= '−Zdf
{W ′} = '−Zdf

{(1 + D1) + D∗
2}. (20)

Note that the refocusing function ' ignores the 1 or any
constant, since a constant transforms to the (u, v) = 0 po-
sition where there is no phase adjustment, &(0, 0) = 0.
The (1 + D1) term refocuses back to its focused state,
while the other D∗

2 does the opposite – it becomes doubly
defocused.

This is because of the complex conjugate, which flips the
phase polarity in the pupil plane, causes the added parabolic
delay &(u, v) to have the opposite effect on wavefront and
increase the amount of parabolic component instead of can-
celling it. Since it becomes doubly defocused, it spreads out

even more

W ′′
−Zdf

= '−Zdf
{'Zdf

[r1e
i2πθ1 ]} + '−Zdf

{D∗
2}, (21)

W ′′
−Zdf

= [r1e
i2πθ1 ] + '−Zdf

{D∗
2}, (22)

and for the opposite holographic image refocused at the op-
posite polarity !Z = +Zdf

W ′′
+Zdf

= [r2e
i2πθ2 ] + '+Zdf

{D1}. (23)

We call W ′′
+Zdf

the main holographic image since it recon-
structs the later time (t2) appearance of the target, and call the
other holographic image W ′′

+Zdf
the conjugate image.

Each reconstructed image W ′′ consists of two compo-
nents, and in-focus one and a doubly defocused one. The in-
focus component describes the single wavefront E1 (target at
t1) plus a doubly blurred component of E2 (the target at t2), or
vice versa. Because the doubly blurred component are rings
that tend to be weaker and expanded beyond the immediate
feature, they form a blurred background to the feature and can
be distinguished from the feature, at least for narrow features
smaller than the ring diameter. The larger the amount of shot
time optical defocus Zdf, the larger and weaker are the dou-
bly defocused rings, which facilitates the isolation of features
from the ringing background.

VI. DISCUSSION

A. Support of time-isolation by simulation

Figure 18 shows a numerical simulation demonstrating
the time isolation, for a simulated amount of shot time defo-
cus of Zdf = 0.15, which is of the same order as the amount
defocusing observed in data (0.26 and 0.08, in the two cases
shown in Figs. 12 and 11). The hypothetical target has letter
“1” at t1 and letter “2” at t2, both as a 100% dark reflectiv-
ity feature (center image), and as a 0.2 cycle phase (velocity)
feature (slightly to upper left of center). Panel (a) shows the
simulated as-measured appearance, which are all rings. Pan-
els (b) and (c) show the simulated recovered images, which
are independent, at the two positions of refocus !Z = ±0.15.
Note that the doubly defocused background rings are faint and
broad enough diameter to easily distinguish the “1” or “2”
features from each others background. These reflectivity fea-
tures were 100% deep in the target model (0 intensity for dark
pixels, 1 intensity for white pixels), i.e., not a small signal.
Hence, the small signal condition is apparently not required
to produce the time isolation effect – but it is convenient for
simplifying the algebra.

The time-isolating or “two-frame” effect is most notice-
able for the narrow features, and is not present for broad fea-
tures. This is because broad features do not change signifi-
cantly under double defocus. The larger the Zdf, the larger the
scale of features which can be time isolated.

Figure 19(b) shows a simulated reflectivity feature on the
target presents best in the magnitude map output, and a simu-
lated velocity (z position or fringe phase) feature presents best
in the phase map output.

Figure 19(a) shows that this two-frame movie ability is
due interaction of the two inner pulses (of the four) through
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FIG. 18. Simulation demonstrating time-isolating or two-frame movie effect. (a) Simulated raw data taken in defocused configuration, shown as magnitude
|W |. Hypothetical target has letter “1” at t1 and letter “2” at t2, both as a 100% dark reflectivity feature (center image), and as a 0.2 cycle phase (velocity) feature
(slightly to upper left of center). The optical fields were then defocused to !Z = 0.15 to simulate defocused measurement, and then through push-pull analysis
to produce W (x, y). This was numerically refocused to !Z = −0.15 to produce main image (c), or !Z = +0.15 for conjugate image (b). The magnitude |W |
shown here displays the reflectivity feature best. The velocity feature shows up best in the phase map (Fig. 19(b)). The faint background ripples are defocused
images. The technique also works with white features on gray background, but not white features on pure black background – a nonzero background is needed.
Spatial units are pixels.

phase stepping, not the outer two pulses, since if the simula-
tion is modified to defeat the phase stepping the two frames
show the same result not two independent results. This also
shows that dust specks on common path optics, such as win-

FIG. 19. (a) Simulated result when phase stepping is NOT used – shows that
the time-isolating effect is not present, the “1” and “2” of t1 and t2 appear
combined, and both the conjugate and main images look identical. (b) The
velocity feature (upper left of image) shows up best in the phase, not magni-
tude, of W .

dows to the target chamber, which create diffraction rings
on the detector do not produce this two-frame movie abil-
ity (since they are not changed by the phase stepping). How-
ever, dust specks on a mirror internal to an interferometer, and
therefore appear in one pulse but not the other, can cause an
artifact. These will also appear on the reference exposure prior
to the shot, and thus can be distinguished from shock related
behavior.

B. Support of time-isolation in data

Figure 7 (shot 020910-04) shows a change in crack ap-
pearance between the conjugate and main frames of shocked
Si. Because the cracks appear more developed at !Z = −0.26
than !Z = +0.26, we have assigned the negative Z to rep-
resent the main image at later time t2, since it would be
unnatural for cracks to reduce in severity with time under
shock loading. The polarity of Z is set by polarity of Zdf,
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implying that the target was initially too far from target lens
causing camera image to focus in front of the detector, so that
retarding the phase with negative &(u, v), which brings cam-
era to focus later (away from interferometer toward detector)
brings image into refocus.

Another silicon shot (020910-03) of the same series also
shows time development between conjugate and main im-
ages, and with the same Zdf polarity where the cracks ap-
pear more developed for !Z = −0.08 than for !Z = +0.08.
That we see a change between the main and conjugate im-
ages is consistent with the two-frame effect. However, our un-
derstanding of the fracture dynamics of shocked Si is insuffi-
cient yet to make a detailed comparison between a theory and
measurement.

VII. CONCLUDING REMARKS

A. Silicon crack growth velocity estimated

Comparing conjugate and main images of shock silicon
Fig. 7, which theory ascribes to change in appearance of sam-
ple over interferometer delay of 0.27 ns, we estimate crack
growth of order ∼15 µm, yielding a crack growth velocity of
∼60 µm per ns.

B. Effect of laser speckle

The dual interferometer topography allows incoherent or
coherent illumination sources. That is, the particular phase
of the illumination wavefront entering the dual interferom-
eter system (“input pulse” of Fig. 2) is immaterial, because
the interference in the second interferometer is between co-
herent echoes of that wavefront. However, the magnitude of
the wavefront matters. For semi-coherent sources such as the
3 ps pulsed laser we use, laser speckle in the input illumi-
nation pulse manifests as a spatially varying intensity mod-
ulation, which is a multiplicative factor which propagates
through the system and manifests in the refocused image as
a modulation, albeit slightly different pattern because of fo-
cal change. This modulation can be a spatial noise source for
identifying those features on the target having a similar size,
but it does not change the phase of the fringe used for deter-
mining velocity shift. This is not a serious problem for our
system, as we can spatially average our image data to reduce
speckle intensity modulations.

However, if the illumination intensity goes to zero in a
speckle, or because the target reflectivity is very absorptive or
reflects the light at an angle that misses the collection lens,
then the fringe phase in those regions is undefined or ex-
cessively noisy. We encounter this problem in some of our
shocked targets.

In principle, an incoherent illumination pulse would have
less speckle induced intensity modulation. While we have
demonstrated production of fringes and velocimetry in our ap-
paratus configuration with continuous white light illumination
from an incandescent lamp,5 and a few microseconds long
flash lamp,6 we have not yet experimented with, say, passage
of an ultrashort pulse through a water cell to generate short
pulse yet broad band incoherent illumination.

C. What about the uncertainty principle?

Although we measure both velocity and position of a tar-
get quasi-simultaneously, we do not violate the uncertainty
principle because our pulse pair illumination creates some
ambiguity at the time scale of the pulse separation.

This work is preliminary, but we are excited about
the possibility of exploring the three-dimensional nature of
rapidly moving and dynamically changing targets in a way
not possible with a line or point VISAR.
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APPENDIX: NUMERICAL MODEL

1. Simulated target

The numerical simulation operates on the same 800
× 800 array used for reprocessing data. A simulated tar-
get reflects light differently for the two pulses, designated
1 and 2.

Surface at time t1: E1(x, y) = 1 everywhere except for a
dark reflectivity feature in center of image in shape of a “1”
where E1 = 0, and a phase feature slightly to upper left of
center where magnitude of E1 is unity but phase is shifted by
0.2 cycle, so that E1 = ei2π0.2.

For the surface at time t2, E2 is similar but a shape “2” is
used instead, and every pixel is multiplied by a phase stepping
shift of ei2πφn having values (0,0.25, 0.5, 0.75) cycle for the
four simulated “exposures.”

2. Simulated measure-as-defocused

The net magnitude or intensity reflected off target is the
sum of the intensity of the two outside pulses, plus the two
inside pulses. The outside magnitude image Magoutside(x, y) is
independent of phase stepping and is

Magoutside = |E′
1|2 + |E′

2|2, (A1)

where the prime indicates that we propagated the E field
through or refocusing engine

E′(x, y) ≡ '!Z[E(x, y)], (A2)

'!Z[E(x, y)] = iFFT {ei2π&(u,v)FFT [E(x, y)]}, (A3)

&(u, v) = 0.5!Z(u2 + v2)/C2, (A4)

where C = 20. We simulate the target measured in a defo-
cused configuration by amount Zdf = +0.15 by passing the
E’s through '!Z with !Z = Zdf.

The inner two pulses have a net magnitude

Mag inner = |E′
1 + E′

2|2 (A5)

and total magnitude is Sn = Magouter + Maginner where the
subscript n represents the four phase step choices.
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3. Detection by simulated instrument

The total magnitude is evaluated four times with the four
phase shifts to simulate being recorded simultaneously by the
four quadrants. Then these are added and subtracted by the
push-pull equation to make a simulated complex image

W = (S0 − S180) − i(S90 − S270), (A6)

where the phase stepping subscript is in degrees. The magni-
tude |W (x, y)| is then displayed as the “as recorded” or !Z
= 0 case shown in Fig. 18(a). As expected, this shows only
out of focus rings from the four features (phase or reflectivity,
time t1 or t2).

4. Simulated refocusing

Now the simulated data W are put through the refocusing
engine to create refocused W ′ (Fig. 18) using the opposite po-
larity refocusing !Z = −Zdf, to undo the defocusing imparted
at recording time. We recover the so-called main, t = t2 im-
age having “2” using negative !Z = −Zdf, and the conjugate
image “1” if we use a positive !Z = −Zdf.

It is easy to mix up the polarities. For our particular math
engine and how positive phase is defined (clockwise vs coun-
terclockwise), this requires using a minus sign in front of the
complex portion of W in Eq. (A6). Otherwise, the polarity of
!Z needed to recover “2” is reversed. Of course, it is arbitrary
which one is called “main” and which called “conjugate,” and
arbitrary which instance is defined to be earlier, t1 or t2. But
we do have a link to a physical phenomena in that the cracks

of Figs. 9 and 12 seem more developed in one frame com-
pared to another and it is logical to expect cracks to deepen
their light absorption with the arrow of time.
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