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A VISAR (Velocity Interferometer System for Any Reflector) is a Doppler velocity interferometer
which is an important optical diagnostic in shockwave experiments at the national laboratories, used
to measure equation of state (EOS) of materials under extreme conditions. Unwanted reflection of
laser light from target windows can produce an additional component to the VISAR fringe record
that can distort and obscure the true velocity signal. Accurately removing this so-called ghost artifact
component is essential for achieving high accuracy EOS measurements, especially when the true
light signal is only weakly reflected from the shock front. Independent of the choice of algorithm
for processing the raw data into a complex fringe signal, we have found it beneficial to plot this
signal as a Lissajous and seek the proper center of this path, even under time varying intensity
which can shift the perceived center. The ghost contribution is then solved by a simple translation
in the complex plane that recenters the Lissajous path. For continuous velocity histories, we find
that plotting the fringe magnitude vs nonfringing intensity and optimizing linearity is an invaluable
tool for determining accurate ghost o↵sets. For discontinuous velocity histories, we have developed
graphically inspired methods which relate the results of two VISARs having di↵erent velocity per
fringe proportionalities or assumptions of constant fringe magnitude to find the ghost o↵set. The
technique can also remove window reflection artifacts in generic interferometers, such as in the
metrology of surfaces. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4943563]

I. INTRODUCTION

The Velocity Interferometer System for Any Reflector
(VISAR)1–3 is an important diagnostic for shock physics and
equation of state (EOS) experiments that measures the time
history of Doppler shifted light reflected from shock or ramp
loaded targets. The laser illumination often accesses the target
through a window, rather than a free surface, to tamp the end of
the target. Unwanted reflection of light from the target window,
which might have an insu�cient antireflection coating, can
produce an additional zero velocity fringe component to the
VISAR interferogram, called a ghost fringe, that can obscure
the true science signal, and create a significant error in the
perceived fringe phase, which is proportional to the output
velocity we seek. In a worse case scenario, the ghost riddled
phase is so di↵erent from the true phase that the velocity
result is useless. Accurately removing this ghost artifact is
thus essential for achieving high accuracy EOS measurements,
especially when the science signal is only weakly reflected
from the shock front in some targets, such as in a normally
transparent material barely at a pressure which creates a re-
flecting shock.

A. Example streaked VISAR data

Figure 1(a) shows an example of a streak camera VISAR
interferogram (data record) having a prominent ghost fringe
artifact and (b) with the artifact removed showing only the
science component of the signal. The time is displayed hor-
izontally and fringes splayed out vertically in phase. Time

a)Electronic mail: erskine1@llnl.gov.

dependent Doppler velocity shifts produce proportional time
dependent phase shifts [✓(t)], with a velocity per fringe (VPF)
proportionality inversely dependent on a chosen interferom-
eter delay, so that the fringe per velocity (FPV) increases with
increasing delay.

Panel (c) shows data taken simultaneous to (a) but with
another VISAR with a smaller delay, so the phase shift for the
same target velocity is smaller. The smaller science phase shift
makes it more challenging to distinguish it from the stationary
ghost. This is a motivation for accurately understanding how
to best remove a ghost fringe.

B. Fourier method for deleting ghost

A popular method of distinguishing the ghost from sci-
ence components is to take a discrete 2D-Fourier transform
(FFT) of the interferogram, with the hope that the science and
ghost components make separate peaks in frequency space.
The fringe slope (phase vs time) is related to the frequency
location of peaks in the 2D-FFT. With the slope being shallow
for a short etalon, the peak separation and width occupy only a
few frequency pixels. Thus there is the danger that the science
and ghost peaks partially overlap so that deletion of the zero
frequency peak pixels will also inadvertently delete some of
the science frequencies. Thus while we find that the FFT zero
frequency deletion method removes a majority of the ghost, it
often does not do a perfect job.

C. Vector o�set method for removing ghost

We introduce a new graphically inspired ghost removal
method,4 “vector o↵set,” which we find intuitive and accurate
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FIG. 1. ((a) and (c)) Example streak camera VISAR records having a prominent stationary artifact (ghost fringe) together with the moving science signal.
The telltale “beats” in fringe magnitude (visibility) indicate presence of a ghost. These are most easily seen in the long etalon data (a) where the phase varies
more strongly. Panel (b) shows (a) after ghost artifact is removed. Panel (c) shows the short etalon data measured simultaneous to the long etalon data (a),
having proportionally smaller phase change vs time, so the low slope of the science fringes is more easily confused with the zero slope of the ghost fringes.
This makes it more challenging to separate for the conventional method. Horizontal axes are pixels in time direction, vertical axes are y-pixels along streak
camera slit direction which encode interferometer phase (and position across target). Positive velocity is downward, and the monotonic velocity change for time
>300 pixels is a deceleration that follows an earlier region of positive velocity shocks, not obvious because of fringes skips and loss of visibility. The polarity of
the velocity change is immaterial to the ghost removal issue. This is Omega shot s57519. Reproduced with permission from “Ghost fringe removal techniques
using Lissajous data presentation,” in 19th Biennial APS Conference on Shock Compression of Condensed Matter (SCCM15), 2015, AIP Conf. Proc. (to be
published). Copyright 2016 AIP Publishing LLC.4

for shots having mostly continuous velocity histories. (Pre-
viously, we have developed analytical equations relating net
fringe magnitude to ghost amount, and these complement the
graphically inspired approach here. See supplementary mate-
rial of Ref. 5, Sec. D.) Figure 2 shows a vector interpretation
of what happens during ghost removal. The sinusoidal portion
(fringes) of the VISAR interferogram, i.e., apart from the non-
fringing (NF) portion, can be expressed as a complex function
W(t) whose real and imaginary parts represent the sine and
cosine amplitudes of the sinusoidal shape for a column of
the interferogram at a given time t. Equivalently, when W is
expressed in polar coordinates, the magnitude and phase of W
represents the fringe visibility and phase. A ghost component
is treated as a fringe having a constant phase corresponding to
zero velocity that adds vectorially to the science fringe which
has a changing phase.

FIG. 2. How fringes of VISAR data appear when represented as a complex
fringe signal W(t) and plotted as a Lissajous (light blue) in the complex
plane, =W is plotted vs <W, over some time region t0–t1. (a) The two
vector components (ghost, science) sum. “Beats” seen in Fig. 1 are minima
in Lissajous magnitude. The vector angle is proportional to Doppler velocity,
divided by the velocity per fringe proportionality VPF. The vector length
is the fringe’s sinusoidal magnitude, which is proportional to the amount
of coherent light reflected from the target. The ghost artifact vector (red)
remains at zero velocity, while the science vector changes angle (and less
strongly, magnitude) with time. (b) Removal of the ghost contribution trans-
lates the science portion so that it is recentered around the origin. Reproduced
with permission from “Ghost fringe removal techniques using Lissajous data
presentation,” in 19th Biennial APS Conference on Shock Compression of
Condensed Matter (SCCM15), 2015, AIP Conf. Proc. (to be published).
Copyright 2016 AIP Publishing LLC.4

D. Vector or Lissajous presentation of fringes

Various algorithms for converting fringes of a streak cam-
era or line-VISAR to W(t) (i.e., phase and magnitude) are
popular, including an FFT method,6 a sine fit along a column,
and push-pull treatment of four rows at 90�.2,7 (The article
Ref. 8 on line-imaging velocimetry, section on data reduction,
is a good review.) A newer algorithm9 developed by the first
author that compensates for Y-variation of illumination and
phase, called speckle adaptive, was used to process most of the
streak VISAR data here. However the ghost removal analysis
described here can work with any algorithm that outputs both
W(t) and the nonfringing intensity NF(t), and all algorithms
can be made to output these.

The nonfringing intensity is the vertical o↵set in a sine fit,
or the zero frequency component in a FFT output, or the sum
of the four push-pull quadrature signals. Since the NF intensity
is the average value of the sinusoid, and since the bottoms of
the sinusoid can never be below zero (intensity is positive), the
NF intensity naturally grows when the illumination intensity
or the target reflectivity grows. In the absence of any constant
contribution, both the NF intensity and the magnitude of the
sinusoid (i.e., size of Lissajous) will grow by the same factor.
Hence the fringe magnitude and NF intensity will form a line
when plotted against each other—a behavior we use fruitfully
as discussed later in Sec. I G.

The complex W can be represented by a vector in the
complex plane. The angle of the vector (phase of the fringe)
is proportional to the target Doppler velocity. This Lissajous
style of data presentation was popularized by early VISARs,
especially the push-pull VISAR2,3 which measured velocity at
a single point on the target. In later years when the line- or
streak camera VISARs were developed, the Lissajous presen-
tation was not practical for displaying the change in velocity
across many points along a line on the target (in which the inter-
ferometer phase also changes linearly). In that case, the raw
2D streak image was used to display the data, having the great
advantage that the eye following the crest of a fringe naturally
also traces out the phase or velocity profile in time.
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FIG. 3. (a) Phase vs time (horizontal pixels) for long etalon data of Fig. 1(a), for fringes averaged over the Y-region 380–580 pixels, for original data with
ghost (blue curve), and for ghost removed by our vector o↵set method (black curve). ((c)–(e)) Lissajous presentation of fringes [W(t)], imaginary vs real parts,
manifests circular loops. (b) Phase error di↵erence between blue and black in (a). This becomes catastrophically large (t > 550) when the Lissajous loops of
uncorrected (d) become smaller than ghost and loops no longer encompass the origin. This is solved in corrected case (e), where data are shifted by (-0.08,
0.005) to center the loops. (c) Initial fringe magnitude at shock (t = 240) is very bright. (Integer fringe skip there in (a) has not been restored, so it is not a large
phase jump). This position defines zero phase for (a) and (b). The reflected light intensity diminishes rapidly upon shock to where loops begin (t > 300, colored
purple). Panel (b) also is a map between color and time in pixels.

However, the data analysis schemes developed for line-
VISARs, such as the Fourier transform method, do not nor-
mally plot the results, even in an intermediate form, as a
Lissajous. Consequently some concepts which are geometri-
cally obvious when presented in Lissajous, such as (1) a ghost
reflection will translate the science data in the 2D Lissajous
space, (2) the loops of the data need to be centered over the
origin for accurate phase, and (3) lopsided loops are an obvious
indication of a pathology in the fringe analysis, are unfamiliar
to many modern line-VISAR users. (Also, other useful associ-
ated outputs such as the magnitude and nonfringing intensity
time histories are not normally outputted by Fourier transform
fringe analysis packages, and thus their diagnostically useful
information is often overlooked.)

In the analyses of this article, we average together several
fringes in the Y-direction, giving up spatial resolution along the
target for the advantage of having a single velocity history to
discuss which has an improved signal to noise ratio. For those
users desiring spatial resolution, one can apply the techniques
described here on an individual basis to a narrow region of
rows encompassing a single period in the Y-direction, and then
“roll” the region upwards, recalculating it for each position to
produce a Y-dependent result. This was done to produce the
spatially preserved de-ghosted result of Fig. 1(b).

Both the reflection from the stationary window and the
moving shock interface generate fringes, which add vecto-

rially. While the ghost vector remains at zero velocity, the
science portion begins at zero velocity at t0 and then evolves to
other angles versus time. The initial angle ✓0 that corresponds
to zero velocity is found from the data at t0 or any time before
the initial shock loading. For many figures, this has already
been done so that the ghost vector lies along the horizontal axis.

The plotting of image W vs real W is a Lissajous plot
(Fig. 2). This is a very useful presentation style for fringes, not
limited to observing the ghost artifact, but includes detection
of general pathologies of the fringe to W(t) conversion. These
tend to distort the path from a circular to a lopsided shape.
Figure 2(b) shows that the science signal alone Wsci(t) is a
loop-like path centered at the origin. The presence of a ghost
artifact Wghst shifts the center of the loop by a vector o↵set,
W =Wsci +Wghst.

Therefore one can remove the ghost artifact by shifting
the W(t) by some amount Gcorr, as W =Wsci +Wghst �Gcorr,
searching until the resulting Lissajous is properly centered. We
do not need to know the correction amount, it is su�cient just
to center W, then use this modified W to compute the velocity
history.

E. Example data: E�ect of ghost on phase

Figures 3(a) and 3(b) show the malevolent e↵ect of a ghost
component on the perceived fringe phase for the example data
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FIG. 4. (a) Example of how the average value of the Lissajous path W(t) (open circle), i.e., the Fourier-computed zero frequency values of the fringes, can
disagree with the proper center (solid circle) if the target Doppler velocity or phase (b) has nonuniform acceleration, or if (c) the angular extent of the total
phase change is not an integer number of cycles. Reproduced with permission from “Ghost fringe removal techniques using Lissajous data presentation,” in 19th
Biennial APS Conference on Shock Compression of Condensed Matter (SCCM15), 2015, AIP Conf. Proc. (to be published). Copyright 2016 AIP Publishing
LLC.4

of Fig. 1(a). Panels (c) and (d) show the o↵ center Lissajous of
the original data having ghost component, and (e) is the ghost-
removed data recentered by vector o↵setting. Panel (a) shows
the ghosted (blue) and corrected (black) curves.

For the late time portion (t > 550) of the data where the
reflected light from the target has diminished relative to the
fixed amplitude of the ghost reflection, the loops are smaller
in diameter relative to the ghost o↵set. Thus they miss the
origin entirely, that is, they do not enclose the origin. This
creates such a large phase error (b) that the perceived signal
is unrelated to the true signal, and useless.

For early time (t < 550) when the loop diameter is larger
than the ghost, so that the loop encloses the origin, the phase
error is a few tenths of a cycle—large enough to be significant,
but not catastrophic. Note that the phase error is periodic with
the phase. This sinuous character is a commonly seen indicator
of the presence of a ghost, or an incomplete removal of one
because the wrong o↵set value was used.

F. Challenges for Fourier method for ghost deletion

An alternative and popular method is to use a 2D-FFT
on the intensity image to find and then delete all near zero

frequency components in the X (time) direction, and in plus/
minus “carrier” frequency in Y direction. This is equivalent to
taking a 1d-FFT of the fringing signal W(t) =Wsci(t) +Wghst
and deleting the near-zero frequency components. Since Wghst
is of zero frequency, it will certainly be removed, but the
deletion process may also inadvertently remove some “good”
near-zero frequency signals of Wsci(t). The presumption was
that Wsci(t) does not have a large zero frequency component,
and so it is not harmed. However Figs. 4 and 5 show several
reasons why this is not a good presumption, especially for the
short etalon VISAR which has fewer revolutions of Lissajous
loops. The fewer the revolutions, the more likely W has a
significant nonzero average.

The FFT method of finding the zero frequency peak height
is related to finding the average hW(t)i. So we only need to
show that hWsci(t)i is significant to show there is a problem.
For the long etalon VISAR where the Lissajous makes many
loops, the average reduces toward zero. However, for the short
etalon which has fewer loops, hWsci(t)i can be relatively signif-
icant. This can happen either when the total phase changes not
an integer number of cycles (Fig. 4(c)), or when the slope of
velocity vs time is nonlinear (Figs. 4(a) and 4(b)), or when the
reflected intensity varies (Figure 5).

FIG. 5. (a) How the average of W(t) can shift due to (b) variable target reflectivity R(t) that varies over a similar time that the phase changes about one cycle.
This creates an apparent center not at the origin, even in the absence of a ghost reflection and when the illumination intensity is constant. The true center can
be determined by plotting (c) the magnitude |W(t)| vs nonfringing (NF) intensity, and translating W until the plot has minimized its deviation from a line or
spot. This line can be o↵set along NF axis due to a nonfringing component of a ghost reflection, or any target incandescence or detector bias. Reproduced with
permission from “Ghost fringe removal techniques using Lissajous data presentation,” in 19th Biennial APS Conference on Shock Compression of Condensed
Matter (SCCM15), 2015, AIP Conf. Proc. (to be published). Copyright 2016 AIP Publishing LLC.4
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G. Mag vs nonfringing intensity plot indicates
Lissajous centration

Our solution for removing the ghost is to translate W(t)
by a complex constant until the Lissajous loops are optimally
centered. Although the latter condition can be judged approx-
imately by eye, we have discovered that a much more accurate
method is to plot Lissajous magnitude |W| versus the NF
intensity and optimize the local linearity, which is to say we
minimize the standard deviation of the data about a line or
point. This method is especially more accurate than the eye
when the intensity is changing with time (Fig. 5(c)), which
is the usual situation. An illumination or target reflectivity
change a↵ects both the magnitude of the fringes and the non-
fringing intensity by the same amount, apart from any constant
contribution.

Figure 6 shows the Mag vs NF plot for the example data
of Fig. 3, comparing the original (a) and de-ghosted (b) cases.
By optimizing the local linearity, we do not mean the linear
arrangement of the very tops of the paths associated with the
Lissajous loops in the ghost-riddled case (a). Instead, we mean
that those loops tighten up into small bundles as in (b), to
minimize a standard deviation about some line, evaluated over
the entire length of loops not just their tops.

The shock onset agrees with the dashed line but is o↵-
screen at near (1.3,0.92) in order to enlarge the region having
smaller intensity—since this is most sensitive to adjustments
of the ghost o↵set. The late time portion beginning at the
olive color is when the ghost reflection suddenly loses visi-
bility (window destruction) and the simple constant correction
becomes inappropriate. One normally deletes this section of
data.

1. Minimizing sinuousness of phase also useful

For some data, especially if it is noisy, it may be di�cult
to determine a unique ghost amount because the Mag vs NF
plot may produce linear-like shapes for several di↵erent ghost
o↵sets. In that case, there is an additional constraint that can
be used simultaneously to narrow the choice. One observes the
phase vs time output as the ghost o↵set is varied and minimizes
the degree of sinuousness. An errant o↵set will produce a
sinuous phase error with a periodicity of integer cycles of
phase, as seen in the blue curve of Fig. 3(a) where it crosses
the black curve at the grid marks. Although the true phase
curve is not yet known, the minds eye can detect changes about
an average shape as the o↵set is varied. Although legitimate
ripples in velocity can be seen in shockwave physics in some
time regions, it is unlikely they are throughout the whole time
region of the data, and unlikely to have a periodicity that is
exactly commensurate to integers cycles of phase.

Note that in both methods, described in Secs. I G and
I G 1, we are minimizing wiggles (sinusoidal deviations),
which are either in magnitude or phase, and these two param-
eters correspond to the two dimensions in polar coordinates of
the Lissajous. The minimization of the wiggles in magnitude is
usually easier, since we have access to a curve, the nonfringing
intensity, which is a good approximation to the shape of the
true, nondeviated, magnitude. Whereas with the phase we do
not have easy access to the true shape of the phase curve. (We

FIG. 6. Plotting Lissajous magnitude versus the nonfringing (NF) intensity
is useful for gauging how centered the Lissajous loops are, especially when
the NF intensity varies with time (which converts the constant magnitude of a
circle into an egg shaped loop with varying magnitude). A linear relationship
indicates proper centration. (a) Data of Fig. 3 having ghost; (b) after ghost
removed. Shock onset is o↵ screen at (1.3,0.92) but agrees with the dashed
line. Late time portion beginning at olive color is when ghost suddenly loses
visibility (window destruction) and the simple constant correction becomes
inappropriate. One normally deletes this section of data.

could form it by averaging phase as we vary the ghost o↵set
over a range—we do this with our minds eye.)

2. Semi-automatic algorithms for finding ghost o�set

The optimum ghost o↵set is found, generally speaking, by
minimizing the variance of a quantity which is either di↵erence
in magnitude or di↵erence in phase of the data from an approx-
imate best fit line or curve. Due to the complicated shape of the
data, including the presence of noise or false features, in some
cases there can be more than one minimum, and the desired
minimum is not necessarily the global minimum. Therefore
some human judgement is often needed. For this reason, we
prefer a semi-manual approach, where the human controls the
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new candidate ghost o↵set using a pair of slider control knobs
(real and imaginary o↵set parts) and the computer updates all
the various curves and quantities nearly instantaneously, which
are displayed in plots. The human moves the two sliders until
the resulting de-ghosted curves produce the best appearing
result. This only takes a few seconds, so time is not a concern,
and the human avoids false minima using his experience.

However, automatic algorithms can be made by straight-
forward programming. Rules are created to govern how an
initial value for the complex o↵set is incremented intelligently,
based on changes in the variance, so that after several iterations
the variance is minimized. When the changes fall below some
threshold, the search can be terminated.

II. THEORY

Equations describing the formation of fringes in an inter-
ferometer from the light of two surfaces (shock and stationary
window) start with the observed intensity of light being a sum
of three components

I(t, y) = Ibb(t) + Lsr(t)R(t){1 + � cos 2⇡[✓(t) + ✓0 + y]}
+ Lsr(t)G{1 + � cos 2⇡[✓0 + y]}. (1)

The first component is a constant, Ibb, being any target incan-
descence or detector bias. The next two are interferometer
responses and, therefore, are proportional to the laser illumi-
nation Lsr. The middle term is due to reflection of the moving
interface having reflectance R with changing science phase
✓(t), and the third is due to a ghost-creating stationary window
of reflectance G having stationary time-zero phase ✓0. The
y is a unit of phase proportional to the position along the
streak camera slit and changes units with context. For example,
I(t,90) means intensity along the interferogram row at the y
position that produces 90� of interferometer output phase.

The fringing (complex) W and nonfringing NF can be
found by fitting a sinusoid to a vertical column (instance of
time) to the data of format of Fig. 1 and assigning the cosine
and sine amplitudes to the real and imaginary parts of W, and
the average value to NF intensity. However, for analysis, it is
more useful to work with the equivalent “push-pull” equations,

W(t) = {[I(t,0) � I(t,180)] + i[I(t,90) � I(t,270)]}/2, (2)
NF(t) = {I(t,0) + I(t,90) + I(t,180) + I(t,270)}/4, (3)

which assume that there are four phase steps at 1/4 cycle
each producing four intensity measurements I(t,0), I(t,90),
I(t,180), and I(t,270). Substitution of Eq. (1) into these
produces a phasor ⇠ei2⇡[✓(t)+✓0] for the science fringes, and
⇠ei2⇡[✓0] for the stationary ghost.

The net corrected fringing signal is a sum of the science
and ghost components minus the applied vector o↵set Gcorr
intended to center the Lissajous and cancel the ghost. This
correction does not a↵ect the NF intensity. Hence

W =Wsci +Wghst �Gcorr, (4)
NF = NFsci + NFghst, (5)

Wsci = Lsr(t)R(t)� ei2⇡[✓(t)+✓0], (6)

Wghst = Lsr(t)G� ei2⇡[✓0]. (7)

The magnitude of the fringing and nonfringing signals is

|W| = |�Lsr(t)R(t)ei2⇡[✓(t)+✓0] + �Lsr(t)
⇥Gei2⇡[✓0] �Gcorr|, (8)

|Wsci| = �Lsr(t) R(t), (9)
NF = [Ibb(t) + Lsr(t)G] + Lsr(t)R(t)
⌘ NFO↵set + Lsr(t)R(t), (10)

where we have collected the first two terms of NF intensity
and renamed it an o↵set,

NFO↵set ⌘ [Ibb(t) + Lsr(t)G]. (11)

The � is the instrument visibility and is ideally unity and
decreases with misalignment of the optics. It can also decrease
due to the velocity texture of the reflecting surface. (If the
reflecting surface has a variety of Doppler shifts producing
a variety of phase shifts, these wash each other out if their
standard deviation is a quarter cycle or larger.)

A. Why does the Mag vs NF plot work?

In Eq. (9), the magnitude of the science fringes after we
have successfully removed the ghost is �Lsr(t)R(t), which is
proportional to the 2nd term of NF(t) in Eq. (10). Hence plot-
ting Mag vs NF intensity and removing the ghost by adjusting
Gcorr will make a line of slope �, provided that the horizontal
o↵set NFO↵set is not changing with time significantly, which is
an approximation.

This seems to work in practice for many shots, even
though in reality the laser intensity may vary 10%–30% during
the record. The key reason is that while Lsr(t) may vary,
it varies much slower than R(t). So at each place that R(t)
changes rapidly, a locally linear feature is made having an
approximate constant NFO↵set.

In a few cases with a target having several transparent
layers, we had better success using multiple ghost vectors
over di↵erent time periods instead of a single vector. Also,
this could be a crude way of modeling a changing Lsr(t). In
principle, a more comprehensive analysis that models the laser
intensity history with a continuous function would produce
even more accurate results.

III. A MORE SUBTLE EXAMPLE

Figure 7(a) shows raw streak VISAR interferogram hav-
ing a weak ghost (Omega s75265), and Fig. 9 shows its before
and after correction diagrams in both Lissajous and Mag vs NF
styles. This weak ghost is not obviously apparent by casually
looking at interferogram, Fig. 7(a). Second, even looking at
its Lissajous (Fig. 9(a)) by eye, it is not obvious where the
proper center should be, since the center of the yellow loop
is di↵erent than the apparent center of the greenish loop.
However, the latter is just an artifact of the intensity changing
with time, as easily resolved by inspecting the Mag vs NF plot,
Fig. 9(b), which becomes much more linear (d) when o↵set by
the correction (0.115, -0.03) as in (c).

The light blue to yellow mid-time region is the most
important for the shock physics and we use it to optimize the

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions.  IP:  128.15.245.88 On: Mon, 14 Mar 2016
15:27:56



033106-7 Erskine et al. Rev. Sci. Instrum. 87, 033106 (2016)

FIG. 7. (a) Streak record of Omega shot s75265 on cubic BN. Casual
visual inspection of (a) does not obviously reveal the ghost. Panel (b) is
nonfringing (NF) intensity. Panel (c) shows raw (black) and ghost-corrected
(colored) phase vs time from (a) for rows Y = 450–496 (2 fringes). Note that
erroneous wiggles (⇠0.25 cycle) are now absent in the colored curve. Color
of curve corresponds to time. Data obtained by Amy Lazicki. Reproduced
with permission from “Ghost fringe removal techniques using Lissajous data
presentation,” in 19th Biennial APS Conference on Shock Compression of
Condensed Matter (SCCM15), 2015, AIP Conf. Proc. (to be published).
Copyright 2016 AIP Publishing LLC.4

correction—most of this region falls nicely into the dashed line
when corrected (d). We are still speculating why the yellow and
red regions have a di↵erent horizontal o↵set along NF axis.
The purple region o↵ the line at time 800 is the end of the
sensible signal and so can be ignored.

Figure 7(c) black curve is the original velocity with the
ghost, and the colored curve is with the ghost removed. Note
that the black ghost-riddled curve shows significantly more
wiggles than what one expects for a smoothly decaying pres-
sure wave. Figure 8 shows the di↵erence between these phase
curves, representing the full malevolent e↵ect of the ghost
o↵set, as black curve.

The white “X” in Fig. 9(f) indicates the proper center of
the Lissajous determined by our technique, and the white “+”
as determined by the conventional method of averaging over a
time region 200–800 pixels. This di↵erence in methods would
produce a phase error shown by red dashed curve in Fig. 8,
indicating there is still substantial ghost e↵ect remaining after
the conventional method is applied attempting to remove it.
This is as much as about 30� for the yellow time period, judged
by the angle subtended by a point on the yellow portion of the
curve to the X and to the +. Also, the X falls closer than the

FIG. 8. Solid black curve is phase error produced by the ghost, namely, the
original phase minus the de-ghosted phase in Fig. 7(c). Dotted red curve
is phase error remaining after the conventional method attempts to remove
it, namely, the change in phase due to Lissajous center changing between
“X” and “+” in Fig. 9(c). The X is center of Lissajous according to our
technique, the + is center using the average of Lissajous over time region
200–800 pixels.

+ to a line between the starting part of the Lissajous, which
indicates zero phase, and the original ghosted center, marked
by the white “O.”

A. Mag vs NF intensity also useful
as distortion detector

This method of optimizing linearity of Mag vs NF inten-
sity is generically useful for minimizing many other distortions
of the fringing data, besides the ghost o↵set. These include
distortions created by poor math assumptions in the algorithm
converting the interferogram to W(t), such as having unantic-
ipated nonlinear phase vs Y, or uncorrected laser illumination
variation vs Y. Each type of pathology produces a di↵erent
kind of distortion, which deviates the Lissajous from circu-
larity and therefore makes ripples in the Mag vs NF plot. These
distortions are described further in Ref. 10 and corrected with
the adjustable gains of their Eqs. 2–5 and Eqs. 10 and 11. Thus
this Mag vs NF plot in Figure 5(c) is extremely useful as a
general indicator of the quality of the algorithm, as applied.
If a nicely linear behavior is observed, one can be confident
that all these potential distortions are absent and the analysis
cannot be improved further.

IV. STRATEGIES FOR DISCONTINUOUS JUMPS

We have developed strategies for computing ghost contri-
butions for velocity profiles that have a discontinuous jump, as
in Fig. 10(a). The lack of a continuous portion prevents loop-
like Lissajous, making it less obvious where the proper center
is. We represent the fringe state that is immediately before the
jump as D0, defining zero phase, and immediately after the
jump as D1 and D2 for the two VISARs systems (1 and 2).

A. Using assumption of same magnitude

Figure 10(c) shows a graphically inspired method that
assumes that the relative fringe magnitudes behave the same
in the two VISAR systems, so one knows that the ghost vector
must be equal-distance and lie on the bisector between the two
step positions D1 and D2. Assuming that the initial phases at
D0 have been subtracted from the data so that the x direction
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FIG. 9. (a) Yellow portion of Lissajous is o↵-center, and Mag vs NF plot (b) is nonlinear, indicating a ghost. Panels (c) and (d) are after ghost is removed by
complex o↵set (0.115, -0.03). Now the Lissajous (c) is properly centered and Mag vs NF plot (d) is linear. Note blue-green and yellow portions appear not to
share the same center, but that is an illusion because of intensity change for blue-green portion. (c) Original ghosted center is marked by white “O,” white “X”
is Lissajous center determined by our technique, and “+” as determined by conventional method of averaging over time region 200–800 pixels. This produces a
phase error ⇠30� for the yellow time period (angle X to + to yellow curve, see red dashes in Fig. 8). Reproduced with permission from “Ghost fringe removal
techniques using Lissajous data presentation,” in 19th Biennial APS Conference on Shock Compression of Condensed Matter (SCCM15), 2015, AIP Conf. Proc.
(to be published). Copyright 2016 AIP Publishing LLC.4

defines zero phase, then the ghost will lie along the horizontal
for a length G

x

. Then where the bisector intersects the hori-
zontal axis reveals G

x

. Simple algebra yields the relation

G
x

=
|D1|2 � |D2|2
2(D1x � D2x)

, (12)

where we are representing the real and imaging parts of a whirl
vector D by D = D

x

+ iDy. Then we compute the science
fringe phase from

✓
S

= arctan
"

D1y

D1x � G
x

#
. (13)

FIG. 10. (a) A discontinuous jump in velocity (phase) as in a single shock presents a di↵erent analysis challenge from the continuous phase history types. Here zero
phase and hence the ghost vector (green) point along horizontal axis, but with an unknown length G

x

. It is a common practice to simultaneously observe the target
with two VISARs having di↵erent velocity per fringe (VPF) proportionalities. This produces a phase change in a known ratio (VPF1/VPF2)= h ⌘ ✓2/✓1 (ignoring
integer fringe wraps). (b) In the angle ratio method, dashes satisfying a constant angular ratio intersecting the horizontal axis tell the length of the ghost vector.
(c) In the same magnitude method, where relative fringe magnitude is consistent between VISARs, the ghost vector is equal-distant between D1 and D2, hence
where bisector intersects horizontal axis. Reproduced with permission from “Ghost fringe removal techniques using Lissajous data presentation,” in 19th Biennial
APS Conference on Shock Compression of Condensed Matter (SCCM15), 2015, AIP Conf. Proc. (to be published). Copyright 2016 AIP Publishing LLC.4
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FIG. 11. The angular ratio method of Fig. 10(b) can be solved numerically by adjusting the ghost size G

x

(assumed purely horizontal in (a)) until the two
curves in (b) for ✓1 and ✓2/h intersect. Angles are measured from D

n

to the head of ghost vector which is center of dashed circle. Zero angle is to right. Here
we use simulated ghost size 0.6. The solid curve is ✓1 from Eq. (15). The dashed curve is ✓2/h from Eq. (17) with h = 2.5.

B. Using ratio of phase angles

Figures 10(b) and 11 show a method using prior knowl-
edge that two di↵erent VISARs observing the same target have
a ratio in their VPF proportionalities, from the ratio in the
interferometer delays. Hence the angular (phase) position ratio
is

(VPF1/VPF2) = h = (✓2 + m2)/(✓1 + m1), (14)

where m are any integer fringe wraps. (We will ignore any
fringe wraps in our example.)

The short dashed path of Fig. 10(b) is a path of constant
ratio ✓2/✓1. Where it intersects the horizontal axis yields G

x

.
The governing two equations are

✓1 = arctan
"

D1y

D1x � G
x

#
, (15)

✓2 = arctan
"

D2y

D2x � G
x

#
. (16)

The 2nd equation can be combined with Eq. (14) to form
another function for ✓1,

✓1 = (1/h)
(

arctan
"

D2y

D2x � G
x

#
+ m2

)
� m1. (17)

The solution to ✓1 is found by plotting the two equations,
Eqs. (15) and (17), in Fig. 11(a) as two curves ✓ versus G

x

,
which ranges from 0 to 1, and finding the G

x

where they
intersect. Then the ghost vector is subtracted from the detected
signals to reveal the science vectors S = D � G where G = G

x

+ i0. Then the true fringe phase angle ✓ 0 is revealed by
✓ 0 = arctan(Sy/S

x

).

V. APPLICATIONS IN A GENERIC INTERFEROMETER

The technique can remove window reflection artifacts
in other, generic interferometer diagnostics, such as in the
measurement of a surface height. Consider that the spatial

variable, along any 2D-path on the surface, is analogous to the
time variable of the preceding analysis. The ghost reflection
component could be spatially constant, while we suppose the
surface height varies along the path, the latter which could
make a loop path in the Lissajous analogous to the loops dis-
cussed earlier, while the window reflection would contribute
a constant value that would shift the center of that loop. As
the reflected light intensity could vary from di↵erent target
surface conditions, the magnitude of the surface generated
fringes would grow linearly versus changes in the nonfringing
intensity, analogous to the Mag vs NF plots described earlier.
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