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Abstract. Many VISAR velocity interferometers employ a streak camera to record fringes along the spatial axis (Y) of a target, ver-
sus time. When the shock loading or target material property varies rapidly as a function of spatial position, the fringe phase (target
velocity) varies rapidly versus Y. This challenges traditional algorithms since the apparent Y-spacing of fringes after the shock can
be significantly di↵erent than the pre-shock (bias) spacing. For traditional column-by-column analysis the intensity signal would be
a sinusoid with rapidly changing frequency, which can confuse a traditional algorithm, adding fluctuations in illumination caused
by speckle. We describe a row-by-row approach to analyze such data called SPARVA (spatially resolving velocimetry analysis).
Using a “sub-wave” configuration we are able to increase the spatial resolution by 3x, compared to conventional techniques.
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Introduction

The velocity interferometer system for any reflector (VISAR)[1, 2] is an important diagnostic for shock physics and
equation of state (EOS) experiments, that measures the time history of Doppler shifted light reflected from shock
or ramp loaded targets. Various algorithms for converting streak camera interferogram fringes to phase versus time
signal are popular, including an FFT method[3], a sine fit along a column, and push-pull treatment of four rows at
90�[2, 4]. References 5, 6, 7 review several techniques. More recent algorithms using a row-by-row approach have
been developed[8, 9], useful for removing ghost artifacts caused by unwanted reflection from stationary windows, due
to the Lissajous style of data presentation[10, 11], and useful for illumination spatial variation.

We describe an improved version optimized for high-spatial resolution along the slit direction of the interfero-
gram, called SPARVA for spatially resolving velocimetry analysis. This is useful for Y-variation caused by illumina-
tion speckle (Fig. 1a), shock arrival time variation (Fig. 1b, or Fig. 6) due to shock loading nonuniformity, or target
material (granularity).

Generically, there can be two styles of analysis, by columns, or by rows (Fig. 2). The popular column by column
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FIGURE 1. (a) Fluctuations in the illumination along the slit direction (Y), such as caused by laser speckle, produce artifacts in
the normal analysis technique. (Omega shot s52238 by Ray Smith.) Each row has its gain adjusted to normalize the intensity. (b)
Non-planar drive may produce “shearing” in the arrival time of events, whose accurate detection could be blurred by insu�cient
spatial resolution (NIF shot N110524).
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FIGURE 2. Two styles of analysis for a line VISAR interferogram (a), column-by-column (b) and row-by-row (c). In column-
by-column an intensity lineout along the slit (Y axis) is fitted to a sinusoid, or a Fourier transform is performed. The phase of
the sinusoid is proportional to target velocity. However this spatial averages over one or more Y-cycles (fringes). In a row-by-row
method a set of four rows are combined arithmetically to yield real (red, cosine-like) and imaginary (blue, sine-like) parts (d), and
nonfringing intensity (e)[2, 4]. Arctangent of real and imaginary parts yields time dependent phase. A better spatial resolution can
be obtained in the row-by-row approach.
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FIGURE 3. Column analysis issues. The reciprocal relation between spatial extent in Y and frequency extent causes the breadth
of the peaks in Fourier space to broaden when the spatial extent is narrowed. This is a problem when the spatial extent is less than
one fringe, because it increases the entanglement between the science peak and the (noisy) illumination peak.

Fourier method can be ill-suited for high spatial resolution, due to the uncertainty principle and use of fringes splayed
along Y (Fig. 3). We optimized a row by row method to be robust to phase step changes, initially for a single fringe
along Y (“full-wave), but discover that it also produces good results for spatial resolution finer than one fringe along
Y (“sub-wave”). We have tested it on real and synthetic data.

Method

The idealized “full-wave” push-pull method (Fig. 4[a]) measures intensity, S n, in four row phases with 90� separation
to produce a complex output W which holds the science,

2W = (S 0 � S 2) + i(S 1 � S 3); NF = (S 0 + S 1 + S 2 + S 3)/4 (1)

and a nonfringing output NF useful to monitor. The target velocity is proportional to the science phase ✓ (in units of
cycles), which is found by the arctangent of the complex result tan 2⇡✓ = =W/<W.

We find that it is possible to use <90� phase interval (“sub-wave”, Fig. 4[b]). Adjustable weights kn are introduced

NF = (k0S 0 + k1S 1 + k2S 2 + k3S 3)/4. (2)
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FIGURE 4. Example of full-wave (a), moderate sub-wave (b) and very sub-wave (c) phase step configurations. In the push-pull
two di↵erence are computed, (S 0 � S 2) and (S 1 � S 3) and assigned to real and imag parts of the complex output W. (a) Traditional
”full wave” has four rows at 90�, which yields the ideal circular Lissajous. When the phase step is reduced (b)(c) producing a
“sub-wave” configurations, an elliptical Lissajous results. This can be corrected by an “obliquity” operation, which magnifies the
minor width relative to the major width. While this means some random noise is also magnified, it can improve the fidelity of
measuring spatially varying phenomenon.

The kn are computed from geometry using intervals between row phases �n, to produce a vector cancellation of
fringes. (The �n of each S n can be estimated using the projection method, Eqs. 2-8 of Ref. 9). Negative kn are allowed
to achieve cancellation, such as in the very sub-wave configuration where the average position of the S n is on one side
of the circle. The nonfringing intensity is subtracted from each raw intensity, S  (S �NF), to produce a fringe-only
version of S n. Note that because pair di↵erences are used in W, such as (S 0 � S 2), errors in NF cancel and do not
a↵ect W. However, an accurate NF is beneficial to linearize the |W| vs NF plot, described later.

For non-quadrature phase steps the Lissajous will initially be noncircular. The Lissajous is circularized by ad-
justing the data by an obliquity gain gq, an astigmatic gain ghv, and translational o↵sets h0, v0 (which also correct any
ghost reflection artifact),

S 00 = ghv(S 0 + h0); S 02 = ghvS 2 (3)
S 01 = S 1 + v0; S 03 = S 3. (4)

The S 0n are used for S n in Eq. 1 to recompute W. This is then modified by the obliquity operation

u = gq(<W + =W); v = <W � =W (5)
<W 0 = (u + v)/2; =W 0 = (u � v)/2 (6)

W = <W 0 + i =W 0 (7)

controlled by gq, nominally unity, which magnifies the minor axis of the Lissajous ellipse relative to the major axis
(see Eqs. 8-11 of Ref. 8). A test for judging Lissajous circularity is the linearity of magnitude |W| with nonfringing
intensity NF (Fig. 5[b]). The |W| vs NF plot is only linear when every type of distortion is absent.

Results

Figure 6 shows a test on NIF data which has mild Y-dependence of the post-shock velocity (phase), perhaps due to
nonplanar loading. Figures 8 and 7 show a test on synthetic data which has a severe case of Y-dependence to the post-
shock velocity (phase), and arrival time of shock. The Y-dependence is so strong that the apparent spacing of the fringe
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FIGURE 5. The magnitude |W| versus nonfringing intensity NF plot (b) is a key litmus test for judging centration. (a) Lissajous of
ideal fringing data W(t) is centered (red curve), compared to non-ideal data (dashed) that is distorted. In the |W| versus NF plot (b)
ideal data forms a line (red) and distortions cause nonlinear shapes (dashed). Reproduced from Ref. 8, copyright 2012 American
Institute of Physics.
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FIGURE 1. (FigS35) (Left) A reason for using row-by-row approach is fluctuations in the illumination along the slit direction (Y),
such as caused by laser speckle. (Omega shot s52238 by Ray Smith.) Each row has its gain adjusted to normalize the intensity.
(Right upper) another reason is where the shock arrival is a function of Y-position along the target (NIF shot N110524). The phase
map (right lower) resulting from our method accurately senses the tilted arrival time.
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SpaEal	variaEon	of	shocked	phase	confirmedFIGURE 2. (FigS615) (Left) Example interferogram where the phase of the post-shock fringe (after x > 600 pixel) varies versus
Y about 0.1 cycle across target, perhaps due to uneven shock loading. (NIF shot N170227 taken by Amy Lazicki.) (Mid) The
2D phase map by our algorithm, after bias phase tilt removed. (Right) Column lineout of the latter at a time of about 715 pixels
showing a phase gradient.

fluctuations, such as due to the coherence of the laser light, called speckle. These can distort the perceived phase, either
positively or negatively depending on which side of the bias fringe an intensity variations overlaps. Figure 1(left) is
an example of data having illumination fluctuation. Secondly, the material properties of the target may be spatially
varying due to grains, or an uneven shock loading could cause the shock arrival time to vary with Y, as in Fig. 1(right),
or shock intensity as in Fig. 2.

However, the popular column-by-column Fourier or sine fitting method is not well suited for a localized Y
analysis in the presence of these irregularities. Due to the uncertainty principle, as the number of cycles of bias periods
used in the column decreases, the broader is the peaks in frequency space. This increases the entanglement between
the science signal near the bias frequency and noises contributed by illumination variation (or target granularity etc.)
located at zero frequency but having width that may extend past the bias frequency.

While no mathematical technique can escape the reciprocal relationship between Y-spatial extent and broadness
in frequency space, for extremely localized Y, such as smaller than a bias period, the concept of a “frequency” may
be less useful.

Method and Results

Better Spatial Resolution

Previously we had assumed that the row-to-row phase step interval should not be smaller than 90�, (which we call
the full-wave configuration). However, surprisingly, we have obtained successful results using about only 30�, called
a sub-wave configuration, so that the four or five row spatial footprint is about 1/4 to 1/3 of a wave, rather than the
3/4 to 1 wave used in prior push-pull methods, although this increases some types of noise. We have also found that
adding a 5th row and averaging it with the first row (see page 210 of Hariharan[12]) significantly improves the result
by making it more accurate to changes in apparent phase step due to spatially dependent physics. It also makes the
Lissajous less oblique which reduces the noise.
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FIGURE 6. (a) Example interferogram where the phase of the post-shock fringe (after x > 600 pixel) varies versus Y about 0.1
cycle across target, perhaps due to uneven shock loading. (NIF shot N170227 taken by Amy Lazicki.) (b) The 2D phase map by
our algorithm, after bias phase tilt removed. (c) Column lineout of the latter post-shock at t = 715 pixels showing a phase gradient.
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FIGURE 7. In creating the synthetic data of Fig. 8 we used illumination spatial fluctuations shown in (a) having energy in a
variety of frequencies including that of the bias fringe frequency. Example column lineouts at X=550 prior to the shock (green),
and X=639 post shock (red) show the e↵ect of the fluctuations. Note that the apparent period of the fringe post shock is for Y>
600 significantly di↵erent than the quiescent bias period of 21 pixels. This is because we chose the shocked velocity to be a strong
function of Y, and the apparent period is the rate of change of phase versus Y. Horizontal axis is Y in pixels along the slit direction.
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FIGURE 8. (a) Input interferogram. (b) Processed fringing component (real part), which is an intermediate output of the algorithm.
(c) The outputted phase 2D map is the arctangent of the Lissajous. For Y below 640 the five sampled rows had a span of 21 pixels.
For Y between 640 and 750 a smaller ”sub-wave” span of 8 pixels was used, and above 750 a very small span of 6 pixels was used.



post-shock (red, Fig. 7b) is significantly smaller than the quiescent (bias) pre-shock value (green, Fig. 7b). Random
fluctuations in the simulated illumination intensity (Fig. 7a) were used having a frequency range that included the bias
fringe frequency. Hence one could not simply filter away the illumination noise since it occupies the same frequency
range as the science. This challenging synthetic data was accurately processed by our algorithm.

Smaller phase steps demand more severe obliquity correction (Fig. 4[c]), which can magnify noise. The benefit
of greater spatial resolution may reduce some error types in a tradeo↵ with increased other noise, such as detector
noise. The nature of this tradeo↵ is under exploration but we suspect there is a minimum in total noise that encourages
use of sub-wave phase steps, especially when the detector noise does not dominate.

We have found it beneficial to include a 5th row, S 4, that is four phase intervals away from S 0, averaging and
substituting it as the first row S 0  (S 0 + S 4)/2. This significantly improves the robustness to changes in phase step,
as shown by Hariharan (see page 210 of Ref. 12). An example apparent phase step change is along the time axis of
our synthetic data, pre-shock compared to post-shock, due to spatially changing shock velocity (red to green curves
in Fig. 7b). The 5th row also makes the Lissajous less oblique, which reduces noise magnification.
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